1,965 research outputs found
Radiation Damage of F8 Lead Glass with 20 MeV Electrons
Using a 20 MeV linear accelerator, we investigate the effects of
electromagnetic radiation on the optical transparency of F8 lead glass.
Specifically, we measure the change in attenuation length as a function of
radiation dose. Comparing our results to similar work that utilized a proton
beam, we conclude that F8 lead glass is more susceptible to proton damage than
electron damage.Comment: 5 pages, 6 figure
The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ∼43 ± 4 per cent between −1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.Peer reviewe
Evidence for a three-nucleon-force effect in proton-deuteron elastic scattering
Developments in spin-polarized internal targets for storage rings have
permitted measurements of 197 MeV polarized protons scattering from vector
polarized deuterons. This work presents measurements of the polarization
observables A_y, iT_11, and C_y,y in proton-deuteron elastic scattering. When
compared to calculations with and without three-nucleon forces, the
measurements indicate that three-nucleon forces make a significant contribution
to the observables. This work indicates that three-body forces derived from
static nuclear properties appear to be crucial to the description of dynamical
properties.Comment: 8 pages 2 figures Latex, submitted to Phys. Rev. Letter
Mathematical and computational models of drug transport in tumours
The ability to predict how far a drug will penetrate into the tumour microenvironment within its pharmacokinetic (PK) lifespan would provide valuable information about therapeutic response. As the PK profile is directly related to the route and schedule of drug administration, an in silico tool that can predict the drug administration schedule that results in optimal drug delivery to tumours would streamline clinical trial design. This paper investigates the application of mathematical and computational modelling techniques to help improve our understanding of the fundamental mechanisms underlying drug delivery, and compares the performance of a simple model with more complex approaches. Three models of drug transport are developed, all based on the same drug binding model and parametrized by bespoke in vitro experiments. Their predictions, compared for a ‘tumour cord’ geometry, are qualitatively and quantitatively similar. We assess the effect of varying the PK profile of the supplied drug, and the binding affinity of the drug to tumour cells, on the concentration of drug reaching cells and the accumulated exposure of cells to drug at arbitrary distances from a supplying blood vessel. This is a contribution towards developing a useful drug transport modelling tool for informing strategies for the treatment of tumour cells which are ‘pharmacokinetically resistant’ to chemotherapeutic strategies
Mask formulas for cograssmannian Kazhdan-Lusztig polynomials
We give two contructions of sets of masks on cograssmannian permutations that
can be used in Deodhar's formula for Kazhdan-Lusztig basis elements of the
Iwahori-Hecke algebra. The constructions are respectively based on a formula of
Lascoux-Schutzenberger and its geometric interpretation by Zelevinsky. The
first construction relies on a basis of the Hecke algebra constructed from
principal lower order ideals in Bruhat order and a translation of this basis
into sets of masks. The second construction relies on an interpretation of
masks as cells of the Bott-Samelson resolution. These constructions give
distinct answers to a question of Deodhar.Comment: 43 page
Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order
We calculate the imaginary parts of the isoscalar scalar and isovector
electromagnetic form factors of the nucleon up to two-loop order in chiral
perturbation theory. Particular attention is paid on the correct behavior of Im
and Im at the two-pion threshold
in connection with the non-relativistic 1/M-expansion. We recover the
well-known strong enhancement near threshold originating from the nearby
anomalous singularity at . In the
case of the scalar spectral function Im one finds a significant
improvement in comparison to the lowest order one-loop result. Higher order
-rescattering effects are however still necessary to close a remaining
20%-gap to the empirical scalar spectral function. The isovector electric and
magnetic spectral functions Im get additionally enhanced near
threshold by the two-pion-loop contributions. After supplementing their
two-loop results by a phenomenological -meson exchange term one can
reproduce the empirical isovector electric and magnetic spectral functions
fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review
Independence of , Poincare Invariance and the Non-Conservation of Helicity
A relativistic constituent quark model is found to reproduce the recent data
regarding the ratio of proton form factors, . We show that
imposing Poincare invariance leads to substantial violation of the helicity
conservation rule, as well as an analytic result that the ratio
for intermediate values of .Comment: 13 pages, 7 figures, to be submitted to Phys. Rev. C typos corrected,
references added, 1 new figure to show very high Q^2 behavio
Angular Conditions,Relations between Breit and Light-Front Frames, and Subleading Power Corrections
We analyze the current matrix elements in the general collinear (Breit)
frames and find the relation between the ordinary (or canonical) helicity
amplitudes and the light-front helicity amplitudes. Using the conservation of
angular momentum, we derive a general angular condition which should be
satisfied by the light-front helicity amplitudes for any spin system. In
addition, we obtain the light-front parity and time-reversal relations for the
light-front helicity amplitudes. Applying these relations to the spin-1 form
factor analysis, we note that the general angular condition relating the five
helicity amplitudes is reduced to the usual angular condition relating the four
helicity amplitudes due to the light-front time-reversal condition. We make
some comments on the consequences of the angular condition for the analysis of
the high- deuteron electromagnetic form factors, and we further apply the
general angular condition to the electromagnetic transition between spin-1/2
and spin-3/2 systems and find a relation useful for the analysis of the
N- transition form factors. We also discuss the scaling law and the
subleading power corrections in the Breit and light-front frames.Comment: 24 pages,2 figure
Neutron charge form factor at large
The neutron charge form factor is determined from an analysis of
the deuteron quadrupole form factor data. Recent calculations, based
on a variety of different model interactions and currents, indicate that the
contributions associated with the uncertain two-body operators of shorter range
are relatively small for , even at large momentum transfer . Hence,
can be extracted from at large without undue
systematic uncertainties from theory.Comment: 8 pages, 3 figure
- …
