15 research outputs found

    Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2

    Get PDF
    High-resolution osmium (Os) isotope stratigraphy across the Cenomanian–Turonian Boundary Interval from 6 sections for four transcontinental settings has produced a record of seawater chemistry that demonstrates regional variability as a function of terrestrial and hydrothermal inputs, revealing the impact of palaeoenvironmental processes. In every section the 187Os/188Os profiles show a comparable trend; radiogenic values in the lead up to Oceanic Anoxic Event 2 (OAE 2); an abrupt unradiogenic trend at the onset of OAE 2; an unradiogenic interval during the first part of OAE 2; and a return to radiogenic values towards the end of the event, above the Cenomanian–Turonian boundary. The unradiogenic trend in 187Os/188Os is synchronous in all sections. Previous work suggests that activity of the Caribbean LIP (Large Igneous Province) was the source of unradiogenic Os across the OAE 2 and possibly an instigator of anoxia in the oceans. Here we assess this hypothesis and consider the influence of activity from other LIPs; such as the High Arctic LIP. A brief shift to high radiogenic 187Os/188Os values occurred in the Western Interior Seaway before the onset of OAE 2. We evaluate this trend and suggest that a combination of factors collectively played critical roles in the initiation of OAE 2; differential input of nutrients from continental and volcanogenic sources, coupled with efficient palaeocirculation of the global ocean and epeiric seas, enhanced productivity due to higher nutrient availability, which permitted penecontemporaneous transport of continental and LIP-derived nutrients to trans-equatorial basins

    Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism

    Get PDF
    Large igneous province volcanic activity during the mid-Cretaceous approximately 94.5 million years ago triggered a global-scale episode of reduced marine oxygen levels known as Oceanic Anoxic Event 2. It has been hypothesized that this geologically rapid degassing of volcanic carbon dioxide altered seawater carbonate chemistry, affecting marine ecosystems, geochemical cycles, and sedimentation. Here, we report on two sites drilled by the International Ocean Discovery Program offshore of southwest Australia that exhibit clear evidence for suppressed pelagic carbonate sedimentation in the form of a stratigraphic interval barren of carbonate, recording ocean acidification during the event. We then use the osmium isotopic composition of bulk sediments to directly link this protracted ~600- kiloyear shoaling of the marine calcite compensation depth to the onset of volcanic activity. This decrease in marine pH was prolonged by biogeochemical feedbacks in highly productive regions that elevated heterotrophic respiration of carbon dioxide to the water column. A compilation of mid- Cretaceous marine stratigraphic records reveals a contemporaneous decrease of sedimentary carbonate content at continental slope sites globally. Thus, we contend that changes in marine carbonate chemistry are a primary ecological stress and important consequence of rapid emission of carbon dioxide during many large igneous province eruptions in the geologic past

    Evaluating Late Cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake

    Get PDF
    Expansive Late Cretaceous lacustrine deposits of East Asia offer unique stratigraphic records to better understand regional responses to global climate events, such as oceanic anoxic events (OAEs), and terrestrial organic carbon burial dynamics. This study presents bulk organic carbon isotopes (δ13Corg), elemental concentrations (XRF), and initial osmium ratios (187Os/188Os, Osi) from the Turonian–Coniacian Qingshankou Formation, a ∼5 Ma lacustrine mudstone succession in the Songliao Basin of northeast China. A notable δ13Corg excursion ( ‰ ∼+2.5‰) in organic carbon-lean Qingshankou Members 2–3 correlates to OAE3 in the Western Interior Basin (WIB) of North America within temporal uncertainty of high-precision age models. Decreases in carbon isotopic fractionation (Δ13C) through OAE3 in the WIB and Songliao Basin, suggest that significantly elevated global rates of organic carbon burial drew down pCO2, likely cooling climate. Despite this, Osi chemostratigraphy demonstrates no major changes in global volcanism or weathering trends through OAE3. Identification of OAE3 in a lake system is consistent with lacustrine records of other OAEs (e.g., Toarcian OAE), and underscores that terrestrial environments were sensitive to climate perturbations associated with OAEs. Additionally, the relatively radiogenic Osi chemostratigraphy and XRF data confirm that the Qingshankou Formation was deposited in a non-marine setting. Organic carbon-rich intervals preserve no compelling Osi evidence for marine incursions, an existing hypothesis for generating Member 1's prolific petroleum source rocks. Based on our results, we present a model for water column stratification and source rock deposition independent of marine incursions, detailing dominant biogeochemical cycles and lacustrine organic carbon burial mechanisms

    Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    Get PDF
    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35–0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr

    Climatic control of fluvial-lacustrine cyclicity in the Cretaceous Cordilleran Foreland Basin, western United States

    Full text link
    Tectono-stratigraphic models of foredeep sedimentation have generally presumed a direct link between changing rates of tectonism and concomitant sedimentological response as manifested by change in thickness, composition or depositional environment of sediment accumulating in adjacent basins. Lacustrine limestone units within the early Cretaceous fluvial/lacustrine Gannett Group of western Wyoming exhibit systematic variation in several geochemical proxies of relative rates of precipitation and evaporation, indicating that lakewater chemistry was controlled by variation in regional climate. Change in proportion of allochthonous terrigenous clastic vs. autochthonous carbonate deposition, as well as carbonate Mg/Ca ratio and stable isotopic composition, occurs at two scales. Metre-scale alternation of micritic limestone and argillaceous marl is accompanied by mineralogical and isotopic variation within individual beds, indicating preferential carbonate accumulation during intervals of decreased regional meteoric precipitation relative to lake-surface evaporation. Limestone deposition began during intervals of maximum aridity, and decreased as increased meteoric precipitation-driven flux of terrigenous clastic sediment overwhelmed sites of carbonate accumulation. Similar upsection variation in limestone mineralogy and isotopic composition at a scale of tens of metres reflects the multiple processes of long-term increase in meteoric precipitation and lakewater freshening prior to influx of terrigenous sediment, across-basin fluvial-deltaic progradation, and renewed accumulation of riverine terrigenous units. Such trends suggest that formation-scale alternation between fluvial clastic and lacustrine carbonate deposition was controlled by climate change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75290/1/j.1365-3091.1996.tb02020.x.pd
    corecore