755 research outputs found

    Generalized curve fit and plotting (GECAP) program

    Get PDF
    Program generates graphs on 8 1/2 by 11 inch paper and is designed to be used by engineers and scientists who are not necessarily professional programers. It provides fast and efficient method for display of plotted data without having to generate any additional FORTRAN instructions

    Measuring practice leadership in supported accommodation services for people with intellectual disability: Comparing staff-rated and observational measures

    Get PDF
    Background Studies incorporating staff-rated or observational measures of practice leadership have shown that where practice leadership is stronger, active support is better implemented. The study aim was to compare measures of practice leadership used in previous research to determine the extent of their correspondence. Method A subset of data from a longitudinal study regarding 29 front-line managers working across 36 supported accommodation services in Australia was used. An observed measure of practice leadership, based on an interview and observation of a front-line manager, was compared with ratings of practice leadership completed by staff. The quality of active support was rated after a 2-hour structured observation. Results Correlations between staff-rated and observed measures were non-significant. Only the observed measure was correlated with the quality of active support. Conclusions This study provides evidence to support using an observational measure of practice leadership rather than reliance on staff ratings

    A Predator from East Africa that Chooses Malaria Vectors as Preferred Prey

    Get PDF
    BACKGROUND: All vectors of human malaria, a disease responsible for more than one million deaths per year, are female mosquitoes from the genus Anopheles. Evarcha culicivora is an East African jumping spider (Salticidae) that feeds indirectly on vertebrate blood by selecting blood-carrying female mosquitoes as preferred prey. METHODOLOGY/PRINCIPAL FINDINGS: By testing with motionless lures made from mounting dead insects in lifelike posture on cork discs, we show that E. culicivora selects Anopheles mosquitoes in preference to other mosquitoes and that this predator can identify Anopheles by static appearance alone. Tests using active (grooming) virtual mosquitoes rendered in 3-D animation show that Anopheles' characteristic resting posture is an important prey-choice cue for E. culicivora. Expression of the spider's preference for Anopheles varies with the spider's size, varies with its prior feeding condition and is independent of the spider gaining a blood meal. CONCLUSIONS/SIGNIFICANCE: This is the first experimental study to show that a predator of any type actively chooses Anopheles as preferred prey, suggesting that specialized predators having a role in the biological control of disease vectors is a realistic possibility

    The GRIFFIN facility for Decay-Spectroscopy studies at TRIUMF-ISAC

    Get PDF
    Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new high-efficiency γ-ray spectrometer designed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF\u27s Isotope Separator and Accelerator (ISAC-I) facility. GRIFFIN is composed of sixteen Compton-suppressed large-volume clover-type high-purity germanium (HPGe) γ-ray detectors combined with a suite of ancillary detection systems and coupled to a custom digital data acquisition system. The infrastructure and detectors of the spectrometer as well as the performance characteristics and the analysis techniques applied to the experimental data are described

    Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize

    Get PDF
    We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects

    Improving Quality of Life Outcomes in Supported Accommodation for People with Intellectual Disability: What Makes a Difference?

    Get PDF
    Background: The quality of life (QOL) of people with intellectual disability living in supported accommodation services is variable, influenced by many possible factors. Various frameworks have attempted to identify these factors without assigning value, direction of influence or relative impact on outcomes. Methods: A realist review of the literature aimed to expose different propositions about variables influencing QOL outcomes and review the strength of supporting evidence for these, to identify their relative influence. Evidence was reviewed for and against each of five clusters. Results: Evidence was strongest for the presence of staff practices (use of Active Support), front-line management practice (use of practice leadership), culture (enabling and motivating), human resources policies and practice (that support front-line leaders and recruitment of staff with the right values), adequate resources, and small, dispersed and homelike settings. Conclusions: The evidence informs policy and practice but in some clusters remains limited, warranting further research which measures outcomes on all QOL domains

    A Cellular Potts Model simulating cell migration on and in matrix environments

    Get PDF
    Cell migration on and through extracellular matrix plays a critical role in a wide variety of physiological and pathological phenomena, and in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, gap size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migratory phenotype on both two-dimensional substrates and within three-dimensional environments, in a close comparison with experimental evidence. As distinct features of our approach, the cells are represented by compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the extracellular matrix is composed of a fibrous mesh and of a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological ECM distribution and, further, a biphasic dependence of migration on the matrix density, and in part adhesion, in both two-dimensional and three-dimensional settings. Moreover, we demonstrate that the directional component of cell movement is strongly correlated with the topological distribution of the ECM fibrous network. In the three-dimensional networks, we also investigate the effects of the matrix mechanical microstructure, observing that, at a given distribution of fibers, cell motility has a subtle bimodal relation with the elasticity of the scaffold. Finally, cell locomotion requires deformation of the cell's nucleus and/or cell-derived proteolysis of steric fibrillar obstacles within rather rigid matrices characterized by small pores, not, however, for sufficiently large pores. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomen in health, disease and tissue engineering applications. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA
    corecore