365 research outputs found

    Modeling of MnS precipitation during the crystallization of grain oriented silicon steel

    Get PDF
    The process of manganese sulfide formation in the course of grain-oriented silicon steel solidification process is described in the paper. Fine dispersive MnS inclusions are grain growth inhibitors and apart from AlN inclusions they contribute to the formation of a privileged texture, i.e. Goss texture. A computer simulation of a high-silicon steel ingot solidification with the use of author’s software has been performed. Ueshima model was adapted for simulating the 3 % Si steel ingot solidification. The calculations accounted for the back diffusion effect according to Wołczyński equation. The computer simulation results are presented in the form of plots representing the process of steel components segregation in a solidifying ingot and curves illustrating the inclusion separation process

    Modelling of non-metallic particles motion process in foundry alloys

    Get PDF
    The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles

    Genetic interaction screen for severe neurodevelopmental disorders reveals a functional link between Ube3a and Mef2 in Drosophila melanogaster

    Get PDF
    Neurodevelopmental disorders (NDDs) are clinically and genetically extremely heterogeneous with shared phenotypes often associated with genes from the same networks. Mutations in TCF4, MEF2C, UBE3A, ZEB2 or ATRX cause phenotypically overlapping, syndromic forms of NDDs with severe intellectual disability, epilepsy and microcephaly. To characterize potential functional links between these genes/proteins, we screened for genetic interactions in Drosophila melanogaster. We induced ubiquitous or tissue specific knockdown or overexpression of each single orthologous gene (Da, Mef2, Ube3a, Zfh1, XNP) and in pairwise combinations. Subsequently, we assessed parameters such as lethality, wing and eye morphology, neuromuscular junction morphology, bang sensitivity and climbing behaviour in comparison between single and pairwise dosage manipulations. We found most stringent evidence for genetic interaction between Ube3a and Mef2 as simultaneous dosage manipulation in different tissues including glia, wing and eye resulted in multiple phenotype modifications. We subsequently found evidence for physical interaction between UBE3A and MEF2C also in human cells. Systematic pairwise assessment of the Drosophila orthologues of five genes implicated in clinically overlapping, severe NDDs and subsequent confirmation in a human cell line revealed interactions between UBE3A/Ube3a and MEF2C/Mef2, thus contributing to the characterization of the underlying molecular commonalities

    Fatigue strength of inner knurled interference fit joined by forming and cutting methods

    Get PDF
    The joining of machine parts by plastic forming is a common method for transmitting forces and torque. In drive trains, the ‘knurled interference fit’ has a high transmission capacity through the combination of frictional connection and form fit. In the present study, the shaft specimen made of C45 steel material is joined with an inner knurled hub made of 16MnCr5 case hardened steel. The influence of the joining process parameters on the torsional fatigue strength of the shaft-hub connection is investigated by means of experimental studies. The most important parameter is the chamfer angle of the knurled hub, which determines the rate of strain hardening in the material and differs between the cutting and forming joining processes. This study shows that knurled interference fit connections joined by forming achieve a higher fatigue strength and a higher maximum static torque than connections joined by cutting

    Spectro-timing analysis of Cygnus X-1 during a fast state transition

    Get PDF
    We present the analysis of two long, quasi-uninterrupted RXTE observations of Cygnus X-1 that span several days within a 10 d interval. The spectral characteristics during this observation cover the region where previous observations have shown the source to be most dynamic. Despite that the source behavior on time scales of hours and days is remarkably similar to that on year time scales. This includes a variety of spectral/temporal correlations that previously had only been observed over Cyg X-1's long-term evolution. Furthermore, we observe a full transition from a hard to a soft spectral state that occurs within less than 2.5 hours - shorter than previously reported for any other similar Cyg X-1 transition. We describe the spectra with a phenomenological model dominated by a broken power law, and we fit the X-ray variability power spectra with a combination of a cutoff power law and Lorentzian components. The spectral and timing properties are correlated: the power spectrum Lorentzian components have an energy-dependent amplitude, and their peak frequencies increase with photon spectral index. Averaged over 3.2-10 Hz, the time lag between the variability in the 4.5-5.7 keV and 9.5-15 keV bands increases with decreasing hardness when the variability is dominated by the Lorentzian components during the hard state. The lag is small when there is a large power law noise contribution, shortly after the transition to the soft state. Interestingly, the soft state not only shows the shortest lags, but also the longest lags when the spectrum is at its softest and faintest. We discuss our results in terms of emission models for black hole binaries.Comment: 13 pages, 15 figures, accepted for publication in Astronomy and Astrophysic

    Determination of substrate log-normal distribution in the AZ91/SICP composite

    Get PDF
    The aim in this work is to develop a log-normal distribution of heterogeneous nucleation substrates for the composite based on AZ91 alloy reinforced by SiC particles. The computational algorithm allowing the restore of the nucleation substrates distribution was used. The experiment was performed for the AZ91 alloy containing 1 % wt. of SiC particles. Obtained from experiment, the grains density of magnesium primary phase and supercooling were used to algorithm as input data
    corecore