86 research outputs found

    Simulating the influence of primary biological aerosol particles on clouds by heterogeneous ice nucleation

    Get PDF
    Primary ice formation, which is an important process for mixed-phase clouds with an impact on their lifetime, radiative balance, and hence the climate, strongly depends on the availability of ice-nucleating particles (INPs). Supercooled droplets within these clouds remain liquid until an INP immersed in or colliding with the droplet reaches its activation temperature. Only a few aerosol particles are acting as INPs and the freezing efficiency varies among them. Thus, the fraction of supercooled water in the cloud depends on the specific properties and concentrations of the INPs. Primary biological aerosol particles (PBAPs) have been identified as very efficient INPs at high subzero temperatures, but their very low atmospheric concentrations make it difficult to quantify their impact on clouds. Here we use the regional atmospheric model COSMO–ART to simulate the heterogeneous ice nucleation by PBAPs during a 1-week case study on a domain covering Europe. We focus on three highly ice-nucleation-active PBAP species, Pseudomonas syringae bacteria cells and spores from the fungi Cladosporium sp. and Mortierella alpina. PBAP emissions are parameterized in order to represent the entirety of bacteria and fungal spores in the atmosphere. Thus, only parts of the simulated PBAPs are assumed to act as INPs. The ice nucleation parameterizations are specific for the three selected species and are based on a deterministic approach. The PBAP concentrations simulated in this study are within the range of previously reported results from other modeling studies and atmospheric measurements. Two regimes of PBAP INP concentrations are identified: a temperature-limited and a PBAP-limited regime, which occur at temperatures above and below a maximal concentration at around −10 ∘C, respectively. In an ensemble of control and disturbed simulations, the change in the average ice crystal concentration by biological INPs is not statistically significant, suggesting that PBAPs have no significant influence on the average state of the cloud ice phase. However, if the cloud top temperature is below −15 ∘C, PBAP can influence the cloud ice phase and produce ice crystals in the absence of other INPs. Nevertheless, the number of produced ice crystals is very low and it has no influence on the modeled number of cloud droplets and hence the cloud structure

    The Long-Term Effect of Radical Prostatectomy on Erectile Function, Urinary Continence, and Lower Urinary Tract Symptoms: A Comparison to Age-Matched Healthy Controls

    Get PDF
    © 2017 Badereddin Mohamad Al-Ali et al.Introduction. To analyze the impact of radical prostatectomy (RPE) on erectile function and lower urinary tract function in comparison to age-matched healthy men. Materials and Methods. Patients who underwent radical retropubic prostatectomy completed questionnaires containing the IIEF-5, the Bristol female LUTS questionnaire, and the International Prostate Symptom Score (IPSS). Results. Patients after RPE were included (n=363). Age-matched healthy men (n=363) were included. The mean IIEF-5 of patients aged 61-70 yrs after RPE was 10.4±6.6 versus 18.8±5.3 in the control cohort; the respective values for men aged 71-80 yrs after RPE were 7.2±6.5 versus 13.6±7.7 in the control cohort. Urinary incontinence after RPE was reported in 41.9% (61-70 years) and 37.7% (71-80) versus 7.5% and 15.1% in the control cohort. The mean IPSS of patients after RPE aged 61-70 yrs was 5.0±4.4 versus 5.5±4.9 in the control cohort; the respective values for men aged 71-80 yrs were 6.0±4.9 versus 7.5±5.7 in the healthy cohort. Conclusions. The negative effect of radical prostatectomy on erectile and urinary incontinence remains substantial. The physiologically declining erectile and lower urinary tract function with ageing reduces the difference between healthy men and those after surgery. Healthy men have a higher IPSS presumably due to the presence of bladder outlet obstruction

    Simulating the influence of primary biological aerosol particles on clouds by heterogeneous ice nucleation

    Get PDF
    Primary ice formation, which is an important process for mixed-phase clouds with an impact on their lifetime, radiative balance, and hence the climate, strongly depends on the availability of ice-nucleating particles (INPs). Supercooled droplets within these clouds remain liquid until an INP immersed in or colliding with the droplet reaches its activation temperature. Only a few aerosol particles are acting as INPs and the freezing efficiency varies among them. Thus, the fraction of supercooled water in the cloud depends on the specific properties and concentrations of the INPs. Primary biological aerosol particles (PBAPs) have been identified as very efficient INPs at high subzero temperatures, but their very low atmospheric concentrations make it difficult to quantify their impact on clouds.Here we use the regional atmospheric model COSMO–ART to simulate the heterogeneous ice nucleation by PBAPs during a 1-week case study on a domain covering Europe. We focus on three highly ice-nucleation-active PBAP species, Pseudomonas syringae bacteria cells and spores from the fungi Cladosporium sp. and Mortierella alpina. PBAP emissions are parameterized in order to represent the entirety of bacteria and fungal spores in the atmosphere. Thus, only parts of the simulated PBAPs are assumed to act as INPs. The ice nucleation parameterizations are specific for the three selected species and are based on a deterministic approach. The PBAP concentrations simulated in this study are within the range of previously reported results from other modeling studies and atmospheric measurements. Two regimes of PBAP INP concentrations are identified: a temperature-limited and a PBAP-limited regime, which occur at temperatures above and below a maximal concentration at around −10&thinsp;°C, respectively. In an ensemble of control and disturbed simulations, the change in the average ice crystal concentration by biological INPs is not statistically significant, suggesting that PBAPs have no significant influence on the average state of the cloud ice phase. However, if the cloud top temperature is below −15&thinsp;°C, PBAP can influence the cloud ice phase and produce ice crystals in the absence of other INPs. Nevertheless, the number of produced ice crystals is very low and it has no influence on the modeled number of cloud droplets and hence the cloud structure.</p

    Whole-genome plasma sequencing reveals focal amplifications as a driving force in metastatic prostate cancer

    Get PDF
    Genomic alterations in metastatic prostate cancer remain incompletely characterized. Here we analyse 493 prostate cancer cases from the TCGA database and perform whole-genome plasma sequencing on 95 plasma samples derived from 43 patients with metastatic prostate cancer. From these samples, we identify established driver aberrations in a cancer-related gene in nearly all cases (97.7%), including driver gene fusions (TMPRSS2:ERG), driver focal deletions (PTEN, RYBP and SHQ1) and driver amplifications (AR and MYC). In serial plasma analyses, we observe changes in focal amplifications in 40% of cases. The mean time interval between new amplifications was 26.4 weeks (range: 5–52 weeks), suggesting that they represent rapid adaptations to selection pressure. An increase in neuron-specific enolase is accompanied by clonal pattern changes in the tumour genome, most consistent with subclonal diversification of the tumour. Our findings suggest a high plasticity of prostate cancer genomes with newly occurring focal amplifications as a driving force in progression

    Ice nucleation by water-soluble macromolecules

    Get PDF
    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models

    Ice nucleation by water-soluble macromolecules

    Get PDF
    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models

    A marine biogenic source of atmospheric ice nucleating particles

    Get PDF
    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties1,2. The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3-11. Sea spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer12-19. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice nucleating material is likely biogenic and less than ~0.2 ÎŒm in size. We find that exudates separated from cells of the marine diatom T. Pseudonana nucleate ice and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol in combination with our measurements suggest that marine organic material may be an important source of ice nucleating particles in remote marine environments such as the Southern Ocean, North Pacific and North Atlantic

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies
    • 

    corecore