228 research outputs found

    One-loop approximation of Moller scattering in Krein-space quantization

    Full text link
    It has been shown that the negative-norm states necessarily appear in a covariant quantization of the free minimally coupled scalar field in de Sitter spacetime [1,2]. In this processes ultraviolet and infrared divergences have been automatically eliminated [3]. A natural renormalization of the one-loop interacting quantum field in Minkowski spacetime (λϕ4\lambda\phi^4) has been achieved through the consideration of the negative-norm states defined in Krein space. It has been shown that the combination of quantum field theory in Krein space together with consideration of quantum metric fluctuation, results in quantum field theory without any divergences [4]. Pursuing this approach, we express Wick's theorem and calculate M{\o}ller scattering in the one-loop approximation in Krein space. The mathematical consequence of this method is the disappearance of the ultraviolet divergence in the one-loop approximation.Comment: 10 page

    Structural and dynamic studies of Pr(11^{11}BH4_{4})3_{3}

    Get PDF
    Rare earth borohydrides RE (BH4)(3) are studied in the context of energy storage, lumines-cence and magnetic applications. We have investigated the structural behavior of pra-seodymium borohydride Pr ((BH4)-B-11)(3) containing B-11 isotope because of the previously reported negative thermal expansion. Differential scanning calorimetry (DSC), in-situ var-iable temperature synchrotron radiation powder X-ray diffraction (SR-PXD) and infrared studies reveal that Pr ((BH4)-B-11)(3) undergoes to a volume contraction during the phase tran-sition from alpha alpha-Pr ((BH4)-B-11)(3) to rhombohedral r-Pr ((BH4)-B-11)(3) phase upon heating to 493 K. Surprisingly, the phase transition persists upon cooling at room temperature. Vibrational analysis also shows that the stretching frequency of BH4-3; anion does not change upon heating which indicates that the B-H bond length remains constant during the structural phase transition from alpha-Pr ((BH4)-B-11)(3) to r-Pr ((BH4)-B-11)(3) phase. Additionally, the energy barrier of reorientation motion of the BH4- anion in the alpha-phase was estimated to be ca 23 kJ/mol by quasi-elastic neutron scattering (QENS) and Raman spectroscopy. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC

    Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors

    Get PDF
    Rechargeable solid-state magnesium batteries are considered for high energy density storage and usage in mobile applications as well as to store energy from intermittent energy sources, triggering intense research for suitable electrode and electrolyte materials. Recently, magnesium borohydride, Mg(BH4_{4})2_{2}, was found to be an effective precursor for solid-state Mg-ion conductors. During the mechanochemical synthesis of these Mg-ion conductors, amorphous Mg(BH4_{4})2_{2} is typically formed and it was postulated that this amorphous phase promotes the conductivity. Here, electrochemical impedance spectroscopy of as-received γ-Mg(BH4_{4})2_{2} and ball milled, amorphous Mg(BH4_{4})2_{2} confirmed that the conductivity of the latter is ~2 orders of magnitude higher than in as-received γ-Mg(BH4_{4})2_{2} at 353 K. Pair distribution function (PDF) analysis of the local structure shows striking similarities up to a length scale of 5.1 Å, suggesting similar conduction pathways in both the crystalline and amorphous sample. Up to 12.27 Å the PDF indicates that a 3D net of interpenetrating channels might still be present in the amorphous phase although less ordered compared to the as-received γ-phase. However, quasi elastic neutron scattering experiments (QENS) were used to study the rotational mobility of the [BH4_{4}] units, revealing a much larger fraction of activated [BH4_{4}] rotations in amorphous Mg(BH4_{4})2_{2}. These findings suggest that the conduction process in amorphous Mg(BH4_{4})2_{2} is supported by stronger rotational mobility, which is proposed to be the so-called “paddle-wheel” mechanism

    Krein Regularization of \lambda\phi^4

    Full text link
    We calculate the four-point function in \lambda\phi^4 theory by using Krein regularization and compare our result, which is finite, with the usual result in \lambda\phi^4 theory. The effective coupling constant (\lambda_\mu) is also calculated in this method

    Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine

    Get PDF
    Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation

    Characterization of the Prokaryotic Sodium Channel NavSp Pore with a Microfluidic Bilayer Platform

    Get PDF
    This paper describes the use of a newly-developed micro-chip bilayer platform to examine the electrophysiological properties of the prokaryotic voltage-gated sodium channel pore (NavSp) from Silicibacter pomeroyi. The platform allows up to 6 bilayers to be analysed simultaneously. Proteoliposomes were incorporated into suspended lipid bilayers formed within the microfluidic bilayer chips. The chips provide access to bilayers from either side, enabling the fast and controlled titration of compounds. Dose-dependent modulation of the opening probability by the channel blocking drug nifedipine was measured and its IC50 determined

    Structure of the C-terminal domain of the Prokaryotic Sodium Channel Orthologue NsvBa

    Get PDF
    Crystallographic and electrophysiological studies have recently provided insight into the structure, function and drug binding of prokaryotic sodium channels. These channels exhibit significant sequence identities, especially in their transmembrane regions, with human voltage-gated sodium channels. However, rather than being single polypeptides with four homologous domains, they are tetramers of single domain polypeptides, with a C-terminal domain (CTD) composed of an inter-subunit four helix coiled-coil. The structures of the CTDs differ between orthologues. In NavBh and NavMs, the C-termini form a disordered region adjacent to the final transmembrane helix, followed by a coiled-coil region, as demonstrated by synchrotron radiation circular dichroism (SRCD) and double electron-electron resonance electron paramagnetic resonance spectroscopic measurements. In contrast, in the crystal structure of the NavAe orthologue, the entire C-terminus is comprised of a helical region followed by a coiled-coil. In this study we have examined the CTD of the NsvBa from Bacillus alcalophilus, which unlike other orthologues is predicted by different methods to have different types of structures: either a disordered adjacent to the transmembrane region, followed by a helical coiled-coil, or a fully helical CTD. To discriminate between the two possible structures we have used SRCD spectroscopy to experimentally determine the secondary structure of the C-terminus of this orthologue and used the results as the basis for modelling the transition between open and closed conformations of the channel

    Multifunctionality of Agriculture Products: Towards Collaborative Policy Guidelines on Sustainable Agro-Related Fuel Development

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Biofuels on 23 January 2017, available online: http://www.tandfonline.com/doi/full/10.1080/17597269.2017.1278930.The primacy of food security overrides that of energy. This is a reasoned view under the United Nations rights-based theories and practice. Within this context, there are voluntary guidelines according to which countries must secure an adequate food supply. Nevertheless, agro-related fuel has recently attracted scientific and commercial attention, following revolutionary thinking concerning the multifunctionality nature of agriculture products and the innovative use of crop resources as conduits in building our energy security and promoting economic growth. Consequently, many countries may be facing the need for strategic decision-making in developing an agro-related fuel programme, given the lack of a credible global framework to inform policy approaches. On the back of this complexity, a key objective of this paper is to provide a critical assessment of whether a credible global collaborative framework can bring much-needed certainty to enable developing countries to weigh up the importance and risks involved and to manage all of the related biodiversity intricacies connected to agro-related policy development in relation to the realisation of sustainable food security.Peer reviewedFinal Accepted Versio

    Differential lipid dependence of the function of bacterial sodium channels

    Get PDF
    The lipid bilayer is important for maintaining the integrity of cellular compartments and plays a vital role in providing the hydrophobic and charged interactions necessary for membrane protein structure, conformational flexibility and function. To directly assess the lipid dependence of activity for voltage-gated sodium channels, we compared the activity of three bacterial sodium channel homologues (NaChBac, NavMs, and NavSp) by cumulative 22Na+ uptake into proteoliposomes containing a 3:1 ratio of 1-palmitoyl 2-oleoyl phosphatidylethanolamine and different “guest” glycerophospholipids. We observed a unique lipid profile for each channel tested. NavMs and NavSp showed strong preference for different negatively-charged lipids (phosphatidylinositol and phosphatidylglycerol, respectively), whilst NaChBac exhibited a more modest variation with lipid type. To investigate the molecular bases of these differences we used synchrotron radiation circular dichroism spectroscopy to compare structures in liposomes of different composition, and molecular modeling and electrostatics calculations to rationalize the functional differences seen. We then examined pore-only constructs (with voltage sensor subdomains removed) and found that in these channels the lipid specificity was drastically reduced, suggesting that the specific lipid influences on voltage-gated sodium channels arise primarily from their abilities to interact with the voltage-sensing subdomains
    • …
    corecore