2,196 research outputs found

    On the dragging of light by a rotating medium

    Get PDF
    When light is passing through a rotating medium the optical polarization is rotated. Recently, it has been reasoned that this rotation applies also to the transmitted image. We examine these two phenomena by extending an analysis of Player (Player 1976 Proc. R. Soc. A 349, 441-445) to general electromagnetic fields. We find that in this more general case, the wave equation inside the rotating medium has to be amended by a term which is connected to the orbital angular momentum (OAM) of the light. We show that optical spin and OAM account for the rotation of the polarization and the rotation of the transmitted image, respectively

    Clearness of style, plainness of statement Experiment Station Bulletins In The Early Years

    Get PDF
    Experiment Station bulletins of the late 19th century were written by the scientists themselves in candid, colorful language. The early bulletins from one state (North Carolina) display the personalities of the writers and the excitement and frustration of developing the disciplines of the new agricultural sciences

    Generalised photon sieves: fine control of complex fields with simple pinhole arrays

    Get PDF
    Spatial shaping of light beams has led to numerous new applications in fields such as imaging, optical communication, and micromanipulation. However, structured radiation is less well explored beyond visible optics, where methods for shaping fields are more limited. Binary amplitude filters are often used in these regimes and one such example is a photon sieve consisting of an arrangement of pinholes, the positioning of which can tightly focus incident radiation. Here, we describe a method to design generalized photon sieves: arrays of pinholes that generate arbitrary structured complex fields at their foci. We experimentally demonstrate this approach by the production of Airy and Bessel beams, and Laguerre–Gaussian and Hermite–Gaussian modes. We quantify the beam fidelity and photon sieve efficiency, and also demonstrate control over additional unwanted diffraction orders and the incorporation of aberration correction. The fact that these photon sieves are robust and simple to construct will be useful for the shaping of short- or long-wavelength radiation and eases the fabrication challenges set by more intricately patterned binary amplitude masks

    Capital University Law Mock Trial: Mock Trial Provides Law Students Real World Challenges

    Get PDF
    Capital University Law School\u27s Mock Trial program provides students practical training, which is difficult to receive as a student outside of an academic setting. The Mock Trial program offers students the opportunity to compete on an inter-school basis, utilizing neutral fact patterns in a variety of practice areas to test the students\u27 advocacy skills. The Mock Trial program concludes with a trial competition, where students participate in every aspect of a civil jury trial before judges and litigators. In recent years, there has been an increased call by clients, employers, and the American Bar Association to increase experiential learning. The Mock Trial program provides students with this experiential learning opportunity to prepare them for legal practice after passing the bar exam.https://fuse.franklin.edu/ss2016/1067/thumbnail.jp

    Polarisation structuring of broadband light

    Get PDF
    Spatial structuring of the intensity, phase and polarisation of light is useful in a wide variety of modern applications, from microscopy to optical communications. This shaping is most commonly achieved using liquid crystal spatial light modulators (LC-SLMs). However, the inherent chromatic dispersion of LC-SLMs when used as diffractive elements presents a challenge to the extension of such techniques from monochromatic to broadband light. In this work we demonstrate a method of generating broadband vector beams with dynamically tunable intensity, phase and polarisation over a bandwidth of 100 nm. We use our system to generate radially and azimuthally polarised vector vortex beams carrying orbital angular momentum, and beams whose polarisation states span the majority of the Poincaré sphere. We characterise these broadband vector beams using spatially and spectrally resolved Stokes measurements, and detail the technical and fundamental limitations of our technique, including beam generation fidelity and efficiency. The broadband vector beam shaper that we demonstrate here may find use in applications such as ultrafast beam shaping and white light microscopy

    Polarisation structuring of broadband light

    Get PDF
    Spatial structuring of the intensity, phase and polarisation of light is useful in a wide variety of modern applications, from microscopy to optical communications. This shaping is most commonly achieved using liquid crystal spatial light modulators (LC-SLMs). However, the inherent chromatic dispersion of LC-SLMs when used as diffractive elements presents a challenge to the extension of such techniques from monochromatic to broadband light. In this work we demonstrate a method of generating broadband vector beams with dynamically tunable intensity, phase and polarisation over a bandwidth of 100 nm. We use our system to generate radially and azimuthally polarised vector vortex beams carrying orbital angular momentum, and beams whose polarisation states span the majority of the Poincaré sphere. We characterise these broadband vector beams using spatially and spectrally resolved Stokes measurements, and detail the technical and fundamental limitations of our technique, including beam generation fidelity and efficiency. The broadband vector beam shaper that we demonstrate here may find use in applications such as ultrafast beam shaping and white light microscopy

    Violation of Leggett inequalities in orbital angular momentum subspaces

    Get PDF
    We report an experimental test of Leggett's non-local hidden variable theory in an orbital angular momentum (OAM) state space of light. We show that the correlations we observe are in conflict with Leggett's model, thus excluding a particular class of non-local hidden variable theories for the first time in a non-polarization state space. It is known that the violation of the Leggett inequality becomes stronger as more detection settings are used. The required measurements become feasible in an OAM subspace, and we demonstrate this by testing the inequality using three and four settings. We observe excellent agreement with quantum predictions and a violation of five and six standard deviations, respectively, compared to Leggett's non-local hidden variable theory

    Compressed sensing with near-field THz radiation

    Get PDF
    We demonstrate a form of near-field terahertz (THz) imaging that is compatible with compressed sensing algorithms. By spatially photomodulating THz pulses using a set of shaped binary optical patterns and employing a 6-μm-thick silicon wafer, we are able to reconstruct THz images of an object placed on the exit interface of the wafer. A single-element detector is used to measure the electric field amplitude of transmitted THz radiation for each projected pattern, with the ultra-thin wafer allowing us to access the THz evanescent near fields to achieve a spatial resolution of ∼9  μm∼9  μm
    • …
    corecore