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Abstract. We report an experimental test of Leggett’s non-local hidden
variable theory in an orbital angular momentum (OAM) state space of light. We
show that the correlations we observe are in conflict with Leggett’s model, thus
excluding a particular class of non-local hidden variable theories for the first time
in a non-polarization state space. It is known that the violation of the Leggett
inequality becomes stronger as more detection settings are used. The required
measurements become feasible in an OAM subspace, and we demonstrate this
by testing the inequality using three and four settings. We observe excellent
agreement with quantum predictions and a violation of five and six standard
deviations, respectively, compared to Leggett’s non-local hidden variable theory.

Measurements on two spatially separated systems that have interacted in the past, such as
two photons coming from the same source, manifest peculiar correlations clamouring for
explanation [1]. Quantum mechanics offers one such explanation, but correlations can of course
also be established in classical systems, for instance if two parties have a prior agreement on the
results of specific measurements. Various families of realistic hidden-variable theories have been
formulated, which maintain that the results of measurements are determined by the properties
carried by each photon embodied in so-called hidden variables (i.e. the prior agreement).
Realistic local hidden variable theories have been thoroughly tested and ruled out, most notably
by violations of the Bell inequality [1]–[3]. More recently, Leggett introduced an inequality that
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Figure 1. Analogy between polarization and OAM. The Poincaré sphere that
characterizes polarization states (a) is analogous to the OAM Bloch sphere (b).
Any point (blue dot) on this sphere is a state given by equation (1). The amplitude
and phase of these states can be encoded using an SLM (insets).

tests a family of realistic theories involving non-local hidden variables [4, 5], trying to explain
non-local correlations while maintaining sharply defined individual properties of the particles.
Experimental violations of the Leggett inequality have recently been demonstrated using
polarization states of photons, thereby ruling out this class of hidden variable theories [6]–[10].
Here we show for the first time a violation of the Leggett inequality for parameters other
than polarization, namely using the orbital angular momentum (OAM) states of photons. The
simplicity of state manipulation in OAM space opens up the possibility of exploring more robust
inequalities with a higher number of detector settings.

In addition to the spin angular momentum associated with a photon’s polarization, light
may also carry OAM, and photon pairs generated by spontaneous parametric down-conversion
(SPDC) are known to be entangled in polarization as well as in their spatial profile, and in
particular in their OAM [11, 12]. OAM eigenstates have helical phase fronts described by
exp(i`φ), where φ is the azimuthal angle in the plane perpendicular to the beam axis, ` is an
integer and `h̄ is the OAM per photon [13]. While there are infinitely many OAM states, here
we concentrate on a two-dimensional (2D) subspace encompassing all superpositions of |± `〉.
For this subspace, we can devise a Bloch sphere similar to the Poincaré sphere for polarization,
wherein the states at the poles are |± `〉 (here we choose ` = 2), and all states on the Bloch
sphere are complex superpositions of |± `〉, see figures 1(a)–(b) [14]. The states along the
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equator are then the analogue of linear polarization states which, because of their intensity
and phase structures, we call sector states. We have recently used this analogy between the
polarization and OAM states to show that photon pairs emitted in SPDC violate a Bell inequality
in 2D OAM subspaces [15, 16] and show entanglement of formation [17]. Similarly, we proceed
to show that correlations of OAM states, just like polarization states, can be used to show a
violation of the Leggett inequality.

We measure OAM states holographically by programming spatial light modulators
(SLMs), which allows us to specify any OAM state without physically aligning any optical
components. Measuring the violation of a Bell inequality [15] required measurement of the
states on orthogonal great circles of the OAM sphere (e.g. along the equator, 0th and 180th
meridians). In the case of the Leggett inequality, the use of SLMs is even more beneficial
because it requires measurements of the states along non-orthogonal great circles (i.e. the
measurement planes are not orthogonal). The SLMs enable us to measure quantum correlations
between arbitrary states, positioned at any point of the Bloch sphere, conveniently and with high
accuracy. On our Bloch sphere, a vector a (red vector in figure 1(b)) corresponds to the state

|a〉 = cos

(
θ

2

)
|2〉 + eiϕ sin

(
θ

2

)
|− 2〉, (1)

where the angles θ and ϕ are the usual inclination and azimuth angles, respectively, defined such
that 06 θ < π and 06 ϕ < 2π .

Mathematically, a correlation can be defined by a conditional probability distribution
P(α, β|a, b), where α and β are the outcomes of measurements a and b made on systems A and
B, respectively. If the outcomes are predetermined by hidden variables λ (thus imposing realism)
and if, in addition, these hidden variables are local (i.e. spatially separated measurements are
independent of each other), the conditional probability becomes

Pλ(α, β|a, b) = Pλ(α|a)Pλ(β|b). (2)

Imposing locality on the hidden variables sets a limit on the correlations that can be achieved
in experiments, expressed in Bell’s famous inequality [1]. To date, the results of various
experiments have been shown to violate the Bell inequality and its derivatives, such as the
Clauser–Horne–Shimony–Holt inequality, leaving one to conclude that realism and locality
cannot hold simultaneously [3, 18]. Whether one should abandon the notion of realism or
locality is a question that has attracted much speculation [19, 20].

Leggett considered a different hidden variable model in which the condition of locality is
relaxed. He analysed a family of non-local hidden variable theories and derived an inequality
that would be satisfied by systems that abide by his model. In accordance with Leggett’s model,
the detection of photons emitted from SPDC has the following properties. (i) Each pair of
photons has a characteristic set of hidden variables λ. (ii) The ensemble of photon pairs is
determined by a statistical distribution of values of λ, ρ(λ), which depends only on the source,
hence allowing one to write

P(α, β|a, b) =

∫
dλ ρ(λ)Pλ(α, β|a, b). (3)

(iii) The outcome of a measurement on each photon, α, may depend on a, b, λ and β

(i.e. equation (2) is not necessarily satisfied, doing away with locality). (iv) Each photon of the
pair, associated with the parameter λ, individually behaves as if it has well-defined properties (or
OAM, in our case), and a measurement on it (conditioned on λ) will show sinusoidal intensity
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variations (known as Malus’s law for polarization) [4]. This model is attractive because the
properties of the individual photons are sharply defined, allowing one to make deterministic
predictions locally on the measurement results of each photon. Moreover, the hidden variables
are non-local and may depend on parameters outside the neighbourhood of the measurement
apparatus. These properties lead to an incompatibility theorem, called the Leggett inequality.
This inequality has been refined in recent work to be experimentally testable with a finite number
of measurements and obviate the need for rotational invariance [7, 8]. Following these recent
refinements, for N possible measurement settings in system A (figure 1(c)), the correlations
of a photon pair that obeys Leggett’s non-local hidden variable model are restricted by the
inequality [9]

1

N

N∑
i=1

|C(ai , bi) + C(ai , b′

i)| ≡ L N (χ)6 2 − 2ηN

∣∣∣sin
χ

2

∣∣∣ (4)

if

1

N

N∑
i=1

|Ev · Eei |> ηN (5)

holds for any vector Ev. Here, C(a, b) and C(a, b′) are the correlation coefficients for
measurement settings a, b and a, b′ respectively. bi and b′

i are separated by angle χ and
we define ei = bi − b′

i . We choose ai , bi and b′

i such that we get maximum coincidence
between ai and bi + b′

i . This means that bi + b′

i has the same azimuth angle as ai but reflected
about the equator. The constant ηN depends on the geometry of the ei s, defined as in
figure 2(a). Measurements with N = 3 have been carried out previously in the polarization state
space [8]–[10], with ηN =

1
3 (calculated by minimizing the left-hand side of inequality (5)),

and a1, a2 and a3 pointing to the coordinate axes (figure 2(a)). Increasing N leads to more
robust inequalities, albeit with more sophisticated alignment requirements if working with
polarization [10]. Increasing N becomes more feasible if the measurements are carried out
holographically with SLMs because of the ability to specify any arbitrary state. We demonstrate
this by showing a violation for N = 4 where the largest violation is found for ei s being the
vertices of a regular tetrahedron (see figure 2(b). In this case η4 =

1
√

6
, and we choose a1, a2,

a3 and a4 to be vertices of a tetrahedron, as shown in figure 2(b)), for maximal violation of the
inequality. For both cases, quantum mechanics predicts that L N (χ) = 2 cos

∣∣χ

2

∣∣, violating the
inequality (4) over a large range of angles, χ .

Our experimental setup is shown in figure 3. We use a quasi-cw, mode-locked, 355 nm UV
laser to pump a 3 mm long type I BBO crystal. The crystal is oriented in a collinear geometry,
with the down-converted plane-polarized 710 nm signal and idler photons incident on the same
beamsplitter. The exit face of the crystal is imaged to separate SLMs that display the holograms
that specify the states we intend to measure. These SLMs are re-imaged to the input facets
of single-mode fibres, which are themselves coupled to single-photon detectors, the outputs
of which are fed into our coincidence counting circuit. The gate time for this coincidence
measurement is 10 ns and we obtain typical count rates of 200 s−1. The photon in the signal
arm then represents system A and that in the idler arm system B.

The results for N = 3 and N = 4 are shown in figure 4. Each data point in these plots
corresponds to three settings, ai , for measurements on system A and bi and b′

i separated by an
angle χ in system B, as indicated in figure 2, thus requiring 2N 2 per angle.
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(a)

χ

(b)

Figure 2. Measurements of the Leggett inequalities. (a) For N = 3, SLM A is
set to measure the three mutually orthogonal states a1, a2 and a3. SLM B is then
set to measure coplanar states bi , b′

i separated by an angle χ where bi –b′

i is
parallel to ei , which are mutually orthogonal. (b) For N = 4, a1, a2, a3 and a4

are the vertices of a tetrahedron. The vectors e1, e2, e3 and e4 are then vertices
of a regular tetrahedron. Violating the inequality requires measurements in four
different non-orthogonal planes. In our case, we chose the planes defined by e1

and e2, e2 and e3, e3 and e4 and e4 and e1.

We measure the coincidence as we vary the angle χ and compare it to the maximal
value of L N allowed by Leggett’s mode as defined in equation (4). Our results, depicted in
figure 4, show that the experimental data follow the prediction of quantum mechanics closely, as
expected, and that the inequality is violated over a large range of angles. For N = 3, we observe
the maximum violation at χ = −42◦, where L3 = 1.8787 ± 0.0241. For N = 4, the maximum
violation occurs at χ = −30◦, where L4 = 1.9323 ± 0.0239. These results imply that it is not
possible to keep definite, individual OAM states of the photons while maintaining the observed
OAM correlations.

In conclusion, we report the first experimental violation of the Leggett inequality outside
a polarization state space. Our measurements in the OAM state space violate the Leggett
inequality by 5 and 6 standard deviations, respectively, for N = 3 and 4. The conclusions
reached by performing a test of the Leggett inequality, whether in an OAM subspace or in
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Figure 3. Experimental setup. We measure photons generated from SPDC by
encoding holograms that define arbitrary OAM states to separate SLMs. The
hologram (inset) imprints the phase and intensity of the first diffracted order [21].
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Figure 4. Violation of the Leggett inequality. Experimentally measured
correlations (black dots) for N = 3 (a) and N = 4 (b) violate the bound arising
from Leggett’s model (green line) and follow closely the predictions of quantum
mechanics (red line). Maximum violation (boxed data points) occurs at −42◦

and −30◦, respectively, for N = 3 and 4, respectively.

polarization space, are the same, supporting quantum theory against a specific class of non-
local hidden variable theory. However, the OAM space offers a much more accessible state
space owing to the programmability of SLMs and less stringent alignment requirements. This is
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exemplified by our measurements for N = 4. Experiments with higher N are practically possible
and may prove to be more robust, as speculated on in [9].
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