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We demonstrate a form of near-field terahertz (THz) imaging
that is compatible with compressed sensing algorithms. By
spatially photomodulating THz pulses using a set of shaped
binary optical patterns and employing a 6-μm-thick silicon
wafer, we are able to reconstruct THz images of an object
placed on the exit interface of the wafer. A single-element
detector is used to measure the electric field amplitude of
transmitted THz radiation for each projected pattern, with
the ultra-thin wafer allowing us to access the THz evanescent
near fields to achieve a spatial resolution of ∼9 μm (λ∕45 at
0.75 THz). We conclude by experimentally improving the
image rate by a factor of ∼3 by undersampling the object with
adaptive and compressed sensing algorithms.
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Imaging using terahertz (THz) radiation (0.1–2 THz) is appeal-
ing as many visibly opaque materials are transparent in this
frequency range [1]. THz imaging enables, for example, the de-
tection of faults in space shuttle panels [2] and investigations into
the substructure of paintings [3]. The THz photon energies are
non-ionizing, unlike x rays, hence inspections will not damage
sensitive electronics [4]. However, THz imaging has two main
outstanding challenges. First, THz detector arrays are usually ex-
pensive and very narrowband [5,6]. Second, the relatively long
wavelengths (0.15–3 mm) impose that diffraction-limited imag-
ing will fail to see micrometer-scale details.

To date, most subwavelength THz imaging techniques use
near-field raster scanning techniques, where a sub-diffraction-
limited probe tip is raster scanned over a surface, sampling the
evanescent field at each location [7,8]. These methods have
achieved 10 nm resolution [8]. While impressive, the weak signals

emanating from the probe are sensitive to detector noise, neces-
sitating long measurement times, and complex detection schemes
are required to improve acquisition rate [9].

Recently, alternative imaging techniques using single-pixel de-
tectors have emerged [10,11]. Single-element detectors are gener-
ally cheaper and more robust than detector arrays. These methods
spatially pattern the incident beam of radiation (described later).
Orthogonal patterns minimize the mean square error [12].
However, unambiguous reconstruction of an N -pixel image nor-
mally requires N measurements. To circumvent the trade-off
between imaging time and resolution, compressive sampling tech-
niques have been developed that make use of assumptions about
the nature of the object to reconstruct an image from an under-
sampled set of measurements [13–16].

Here, we demonstrate near-field THz imaging using an ultra-
thin, silicon photomodulator. The ultra-thin wafer allows us to
access the THz evanescent fields to achieve a spatial resolution
of 9 μm (λ∕45 at 0.75 THz), demonstrated experimentally by
imaging a resolution target. We conclude by investigating two
different methods that improve the acquisition time by recon-
structing images from undersampled sets of measurements: adap-
tive sampling and compressed sensing.

Single-pixel imaging schemes have been implemented in the
THz regime [17–19]. An approach to this employs dynamic spatial
patterning of a THz beam using a photo-conductive modulator
[20]. This technique exploits the fact that when an optical pump
beam is incident onto a photomodulator, such as a silicon wafer,
electron–hole pair photo-excitation increases its THz conductivity
[21] and reduces THz transmission. By shaping the optical pump
beam into a binary intensity pattern, we are able to spatially control
which areas of the modulator transmit THz radiation. In this way,
the pattern in the optical pump beam is imprinted onto the
incident THz beam. Previous studies have shown that the photo-
modulator thickness limits the achievable resolution, as this deter-
mines the amplitude of evanescent fields interacting with the
object [20].

Figure 1 illustrates our imaging setup (a detailed schematic is
shown in the supplementary material of Ref. [20]). For generation
and detection of THz radiation we use a pair of ZnTe crystals in a
standard THz time domain spectrometer [22]. The system is
pumped by an 800 nm (90 fs) amplified Ti:sapphire laser running
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at a repetition rate of 1050 Hz. This laser system also provides a
photo-excitation beam that is spatially structured by a digital mi-
cromirror device. This patterned beam (fluence of ∼100 μJ∕cm2

per pulse) is projected onto a silicon wafer (6-μm-thick,
8000 Ω · cm resist) using a �5 cm lens. Note that a 6-μm-thick
modulator is the optimal thickness, determined by the inter-
play between absorption and diffraction—see Supplement 1,
Section 1.A.

In the regions that are illuminated by the optical photo-
excitation beam, the silicon conductivity increases, rendering
the material response at these locations opaque to THz radiation
[21]. Then a single-cycle THz pulse (see Supplement 1, Fig. S1)
arrives ∼5 ps after photo-excitation. Since carrier diffusion can be
neglected on these fast timescales, the pattern from the 800 nm
beam is transferred to a THz pulse without spatial blurring. The
patterned THz field then interacts with an object placed on
the exit interface of the Si wafer before being collected onto a
single-element detector. We record the peak amplitude of our
THz pulse for our signal (see Supplement 1, Fig. S1).

Dynamic spatial encoding of the THz beam enables an image
to be reconstructed from a series of measurements with a single-
element detector. We measure the total THz field transmitted
through an object as it is illuminated with a sequence of spatially
patterned beams. Measurement yi represents the transmission
corresponding to the ith pattern. To reconstruct the image of
the object from the series of measurements, the spatial structure
of the set of illuminating patterns can be stored in a sampling
matrix A. Here the ith row of A is an N -element vector that
is a 1D representation of the ith projected pattern. Therefore,
for an N -pixel image we have measurement yi �

PN
j�1 Aijxj

where xj is the jth image pixel. This a matrix representation of

y � Ax; (1)

where y is a column vector containing the measurements, and
x is a column vector representing the N -pixel image of the
object. The image is obtained by solving the above equation
for x, which is then reshaped into a 2D array of image pixel
values.

As described above, A represents the basis in which the image
is expanded. When the image is fully sampled with N orthogonal
measurements, A satisfies AAT � I, where I is the identity ma-
trix. In this case the solution is given by x � AT y∕N 2. Further, it
is known that an orthogonal basis minimizes the detector noise
[12]. For this reason, when the number of measurements equals
the number of image pixels, we use a Hadamard matrix (A � H)
formed from the Paley type-I construction (see Supplement 1,
Section 5). H consists of elements taking the value of 1 or −1
in equal number. As our intensity masks cannot represent nega-
tive numbers, we use a lock-in amplifier to record the difference in
transmission between a mask consisting of 1s (i.e., transmitting
radiation) and 0s (i.e., blocking radiation) and its inverse. This
measurement also minimizes low-frequency intensity fluctuations
of our THz source (see supplementary material of Ref. [20]).

If an object is undersampled, A has fewer rows than columns,
and the problem is underconstrained, with infinitely many solu-
tions that satisfy Eq. (1). Adaptive sampling and compressive
sensing are both strategies that make use of assumptions about
the nature of the object (such as object sparsity when represented
in a particular basis) to choose one solution that most likely
represents the object. Depending upon the strength of these
assumptions, and the level of noise in the measurements, these
approaches have been proven to enable functioning image
reconstruction from highly undersampled measurement sets
[13–16]. More details of the compressive approaches we use in
this work are given below.

In near-field imaging, subwavelength resolution can be achieved
due to the interaction of near fields with the object. However, near
fields decay exponentially with distance. In our approach, the
thickness of the modulator can therefore be expected to play an
important role in determining the ultimate resolution of our
THz images. To investigate this, we image a subwavelength-sized
metallic resolution target (cartwheel) through a silicon photomo-
dulator of varying thickness h, as shown in Fig. 2.

For a relatively thick modulator (h � 400 μm, of the order of
the THz wavelength), we see that the subwavelength features of
the cartwheel are not evident in the image [see Fig. 2(a)]. One can
understand the resulting image by considering the diffracted field
expected for the object when propagated through a thickness h of
silicon (refractive index � 3.44), plotted in Fig. 2(d) using scalar
diffraction theory [23] (see Supplement 1, Section 3 for details).
While agreement is imperfect (see below), we see similar blurring
to the cartwheel edges, particularly for the high spatial frequency
components toward the center of the cartwheel, completely dis-
torting the final image. By reducing the photomodulator thick-
ness to 110 μm, we begin to recover an image resembling a
cartwheel [see Figs. 2(b) and 2(e)], with only the center of the
image distorted. Only when we reduce the modulator thickness
to 6 μm do we recover a reasonably complete image of the cart-
wheel [see Figs. 2(c) and 2(d)]. The overall trend here is clear: as
the thickness of the modulator is reduced, the images sharpen.
Hence, due to the increasing spatial frequency content of the cart-
wheel toward its center, we can estimate our obtained resolution
by evaluating the minimal distance for which the cartwheel arms
are distinguishable. This leads to resolution estimates of 154, 100,
and 9 ��4� μm for h � 400, 110, and 6 μm, respectively.

We note that there are two main reasons for the discrepancies
between the left- and right-hand panels of Fig. 2. First, the polari-
zation of the THz field is important, while our scalar diffraction
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THz beamTo single-element
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Fig. 1. Illustration of imaging setup: using a digital micromirror device
and a lens, a pump pulse is spatially structured and projected onto a sil-
icon wafer. This spatially modulates a coincident THz pulse. This THz
pulse then passes through an object and is measured on a single-element
THz detector. Inset is an optical image of a resolution test target (cart-
wheel) manufactured from gold on a 6-μm-thick silicon wafer.
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calculations neglect this. This leads to the breaking of rotational
symmetry in the experimental images. Indeed, the effect of polari-
zation can be observed explicitly when we vary the orientation of
certain objects (see Supplement 1, Section 2). Second, we must
note that the optical pump light has a finite penetration depth in
silicon (11 μm for 800 nm [24]), which will influence the dif-
fracted field. This has two effects: first, the modulation efficiency
will decrease due to transmitted pump intensity being wasted.
Conversely, this finite penetration depth actually decreases the
effective thickness of the modulator, increasing resolution. We
discuss these effects and the optimal modulator thickness in
the Supplement 1, Section 1.A. Further investigation with direct
gap modulators is therefore required in order to push the THz
image resolution lower than 9 μm using this method.

As with all near-field imaging techniques, small signals go hand
in hand with long measurement times. However, as our imaging
approach does not rely on raster scanning, we can reduce acquis-
ition time by reducing the total number of independent measure-
ments. It should be noted that this is the first time undersampling

with near-field radiation has been performed. In this section, we
investigate two strategies to reconstruct images using under-
sampled sets of measurements: adaptive sampling and compressed
sensing.

Using adaptive sampling, we first measure a low-resolution im-
age and then sample regions of interest with progressively higher
resolution. In short, identification of coarse edges from this initial
low-resolution image determines where to sample with higher res-
olution, thus reducing the total number of measurements that are
made [14]. Edge identification is achieved via a single-tier 2D Haar
wavelet decomposition of the low-resolution image. The Haar
wavelet transform is a hierarchical structure that highlights the pres-
ence of edges at progressively finer scales: edge features yield large
wavelet coefficients, while more uniform areas yield low wavelet
coefficients [25]. In our experiment, after each higher resolution
resampling phase, edge detection is performed on the new image,
and the process is repeated until the required resolution is reached.
The algorithm is described in detail in Supplement 1, Section 5.

Compressed sensing is an alternative non-adaptive approach
that makes assumptions about the object to reduce the total num-
ber of measurements. This can include knowledge of the basis in
which the representation of the image is sparse [13], or the basis in
which the total variance or curvature of the object is expected to
be low. Such assumptions typically hold for a wide variety of im-
ages, and compressed sensing theory shows how to then recover
an image using fewer measurements than the number of pixels in
the image [i.e.,A in Eq. (1) has fewer rows than columns] [13]. In
this work we make the assumption that the total curvature of the
image will be low. We sample the object using a set of random
binary patterns, which are chosen due to their high degree of
incoherence with respect to a wide range of sparse basis represen-
tations. Non-adaptive compressed sensing has the advantage that
masks can be designed (and loaded onto a modulator) ahead of
time rather than in response to measurement, as is the case for
adaptive sampling.

Note that, in both our sampling strategies, we have applied
regularization to combat noise in our measurements. This essen-
tially allows the reconstruction algorithm to permit solutions that
deviate from the measurements by an amount based on the esti-
mated noise level, while seeking to minimize the level of curvature
in the reconstruction. More details are given in Supplement 1,
Section 7, alongside unregularized images.

Figure 3 compares reconstructed images of a transmissive
object depicting two of Maxwell’s equations as the number of
measurements for both adaptive imaging and compressive sensing
are reduced. The main features of the object are clearly recovered
even when the number of samples is reduced to 35% of the
Nyquist limit. These images also display directional contrast
modulation due to polarization effects (see Supplement 1,
Section 2). Comparing the two methods, we observe that adaptive
sampling marginally outperforms compressed sensing, yielding
higher contrast features. Note that our aim is to demonstrate
the feasibility of these techniques rather than to optimize the
algorithms. We anticipate improvements in image quality should
one inject more prior knowledge. We also note that there are a
wide variety of algorithms available for both adaptive sampling
[14,15] and compressive sensing [13,16] that are optimized for
particular scenarios.

In conclusion, we have demonstrated a subwavelength THz
imaging technique that is compatible with adaptive and compres-

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. (a)–(c) THz images of the cartwheel shown in the inset of
Fig. 1 taken through 400-, 110-, and 6-μm-thick silicon wafers, respec-
tively. See Supplement 1, Fig. S4 for a close-up annotated version of
part (c). Note, the cartwheels in (a) and (b) have diameters larger than
the field of view. The origin of the vertical lines in (a) is discussed in
Supplement 1, Section 4. (d)–(f ) Calculated diffracted fields of a
cartwheel as propagated through 400-, 110-, and 6-μm-thick silicon,
respectively. THz polarization is horizontal in the experiment.
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sive sensing algorithms. We photoexcite a 6-μm-thick silicon wa-
fer with a sequence of optical patterns to spatially modulate an
incident THz beam. By placing an object at the exit interface
of our wafer, we demonstrate imaging at 9��4� μm resolution
and observe strong polarization effects at the interface of a con-
ductor. We conclude by comparing two strategies to reconstruct
an image from an undersampled set of measurements: adaptive
sampling and compressed sensing. To the best of our knowledge,
this is the first experimental demonstration, in any spectral re-
gime, of undersampled image reconstruction at highly subwave-
length dimensions. It is not obvious that these multipixel
sampling approaches would work well in the near field: an
implicit assumption is that the transmission through each pattern
depends only on the open area and not on aperture shape. Our
results demonstrate that this assumption is surprisingly robust
down to a scale of λ∕45. Such approaches therefore hold promise
for improving signal to noise in other near-field and low-signal
imaging techniques.
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Fig. 3. Compressive 72 × 72 THz images of ∇ ·E�0 and ∇ ·B�0
(see Supplement 1 for optical image) with decreasing number of measure-
ments, where the top, middle, and bottom rows, respectively, use 75%,
50%, and 35%measurements as the number of pixels. Because of the low
repetition rate of our laser, a full measurement set takes 5 h. Left column:
adaptive sampling. Right column: compressed sensing.
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