59 research outputs found

    ErbB4 expression in neural progenitor cells (ST14A) is necessary to mediate neuregulin-1beta1-induced migration

    Get PDF
    Activation of the receptor tyrosine kinase ErbB4 leads to various cellular responses such as proliferation, survival, differentiation, and chemotaxis. Two pairs of naturally occurring ErbB4 isoforms differing in their juxtamembrane (JMa/JMb) and C termini (cyt1/cyt2) have been described. To examine the role of ErbB4 in neuron migration, we cloned and stably transfected each of the four ErbB4 isoforms in ST14A cells (a neural progenitor cell line derived from the striatum of embryonic day 14 rats) endogenously expressing the other members of the ErbB family: ErbB1, ErbB2, and ErbB3. Using immunoprecipitation assays, we showed that the neuregulin-1beta1 (NRG1beta1) stimulus induced ErbB4 tyrosine phosphorylation and phosphatidylinositol 3-kinase (PI3K) recruitment and activation (as demonstrated by Akt phosphorylation) either directly (ErbB4 cyt1 isoform) or indirectly (ErbB4 cyt2 isoform). We examined the ability of the four ErbB4 isoforms to induce chemotaxis and cell proliferation in response to NRG1beta1 stimulation. Using migration assays, we observed that only ErbB4-expressing cells stimulated with NRG1beta1 showed a significant increase in migration, whereas the growth rate remained unchanged. Additional assays showed that inhibition of PI3K (but not of phospholipase Cgamma) dramatically reduced migratory activity. Our data show that ErbB4 signaling via PI3K activation plays a fundamental role in controlling NRG1beta1-induced migration

    PPARα downregulates airway inflammation induced by lipopolysaccharide in the mouse

    Get PDF
    BACKGROUND: Inflammation is a hallmark of acute lung injury and chronic airway diseases. In chronic airway diseases, it is associated with profound tissue remodeling. Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor, that belongs to the nuclear receptor family. Agonists for PPARα have been recently shown to reduce lipopolysaccharide (LPS)- and cytokine-induced secretion of matrix metalloproteinase-9 (MMP-9) in human monocytes and rat mesangial cells, suggesting that PPARα may play a beneficial role in inflammation and tissue remodeling. METHODS: We have investigated the role of PPARα in a mouse model of LPS-induced airway inflammation characterized by neutrophil and macrophage infiltration, by production of the chemoattractants, tumor necrosis factor-α (TNF-α), keratinocyte derived-chemokine (KC), macrophage inflammatory protein-2 (MIP-2) and monocyte chemoattractant protein-1 (MCP-1), and by increased MMP-2 and MMP-9 activity in bronchoalveolar lavage fluid (BALF). The role of PPARα in this model was studied using both PPARα-deficient mice and mice treated with the PPARα activator, fenofibrate. RESULTS: Upon intranasal exposure to LPS, PPARα(-/- )mice exhibited greater neutrophil and macrophage number in BALF, as well as increased levels of TNF-α, KC, MIP-2 and MCP-1, when compared to PPARα(+/+ )mice. PPARα(-/- )mice also displayed enhanced MMP-9 activity. Conversely, fenofibrate (0.15 to 15 mg/day) dose-dependently reduced the increase in neutrophil and macrophage number induced by LPS in wild-type mice. In animals treated with 15 mg/day fenofibrate, this effect was associated with a reduction in TNF-α, KC, MIP-2 and MCP-1 levels, as well as in MMP-2 and MMP-9 activity. PPARα(-/- )mice treated with 15 mg/day fenofibrate failed to exhibit decreased airway inflammatory cell infiltrate, demonstrating that PPARα mediates the anti-inflammatory effect of fenofibrate. CONCLUSION: Using both genetic and pharmacological approaches, our data clearly show that PPARα downregulates cell infiltration, chemoattractant production and enhanced MMP activity triggered by LPS in mouse lung. This suggests that PPARα activation may have a beneficial effect in acute or chronic inflammatory airway disorders involving neutrophils and macrophages

    Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features

    Get PDF
    BACKGROUND: Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. METHODS: Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by DNA synthesis and matrix metalloproteinase activity assays. Moreover, epithelial cells were exposed to supernatants from cultured peripheral blood mononuclear cells, obtained from healthy donors or atopic asthmatic subjects and subsequently infected by rhinovirus and bFGF release was estimated. bFGF was also measured in respiratory secretions from atopic asthmatic patients before and during rhinovirus-induced asthma exacerbations. RESULTS: Rhinovirus epithelial infection stimulated mRNA expression and release of bFGF, the latter being positively correlated with cell death under conditions promoting rhinovirus-induced cytotoxicity. Supernatants from infected cultures induced lung fibroblast proliferation, which was inhibited by anti-bFGF antibody, and demonstrated increased matrix metalloproteinase activity. Rhinovirus-mediated bFGF release was significantly higher in an in vitro simulation of atopic asthmatic environment and, importantly, during rhinovirus-associated asthma exacerbations. CONCLUSIONS: Rhinovirus infection induces bFGF release by airway epithelium, and stimulates stroma cell proliferation contributing to airway remodeling in asthma. Repeated rhinovirus infections may promote asthma persistence, particularly in the context of atopy; prevention of such infections may influence the natural history of asthma

    Protection of Stem Cell-Derived Lymphocytes in a Primate AIDS Gene Therapy Model after In Vivo Selection

    Get PDF
    Background: There is currently no effective AIDS vaccine, emphasizing the importance of developing alternative therapies. Recently, a patient was successfully transplanted with allogeneic, naturally resistant CCR5-negative (CCR5 delta 32) cells, setting the stage for transplantation of naturally resistant, or genetically modified stem cells as a viable therapy for AIDS. Hematopoietic stem cell (HSC) gene therapy using vectors that express various anti-HIV transgenes has also been attempted in clinical trials, but inefficient gene transfer in these studies has severely limited the potential of this approach. Here we evaluated HSC gene transfer of an anti-HIV vector in the pigtailed macaque (Macaca nemestrina) model, which closely models human transplantation. Methods and Findings: We used lentiviral vectors that inhibited both HIV-1 and simian immunodeficiency virus (SIV)/HIV-1 (SHIV) chimera virus infection, and also expressed a P140K mutant methylguanine methyltransferase (MGMT) transgene to select gene-modified cells by adding chemotherapy drugs. Following transplantation and MGMT-mediated selection we demonstrated transgene expression in over 7% of stem-cell derived lymphocytes. The high marking levels allowed us to demonstrate protection from SHIV in lymphocytes derived from gene-modified macaque long-term repopulating cells that expressed an HIV-1 fusion inhibitor. We observed a statistically significant 4-fold increase of gene-modified cells after challenge of lymphocytes from one macaque that received stem cells transduced with an anti-HIV vector (p<0.02, Student's t-test), but not in lymphocytes from a macaque that received a control vector. We also established a competitive repopulation assay in a second macaque for preclinical testing of promising anti-HIV vectors. The vectors we used were HIV-based and thus efficiently transduce human cells, and the transgenes we used target HIV-1 genes that are also in SHIV, so our findings can be rapidly translated to the clinic. Conclusions: Here we demonstrate the ability to select protected HSC-derived lymphocytes in vivo in a clinically relevant nonhuman primate model of HIV/SHIV infection. This approach can now be evaluated in human clinical trials in AIDS lymphoma patients. In this patient setting, chemotherapy would not only kill malignant cells, but would also increase the number of MGMTP140K-expressing HIV-resistant cells. This approach should allow for high levels of HIV-protected cells in AIDS patients to evaluate AIDS gene therapy

    Matrix metalloproteinases 2 and 9 (gelatinases A and B) expression in malignant mesothelioma and benign pleura

    Get PDF
    Matrix metalloproteinases (MMPs), in particular the gelatinases (MMP-2 and -9), play a significant role in tumour invasion and angiogenesis. The expression and activities of MMPs have not been characterised in malignant mesothelioma (MM) tumour samples. In a prospective study, gelatinase activity was evaluated in homogenised supernatants of snap frozen MM (n = 35), inflamed pleura (IP, n = 12) and uninflammed pleura (UP, n = 14) tissue specimens by semiquantitative gelatin zymography. Matrix metalloproteinases were correlated with clinicopathological factors and with survival using Kaplan-Meier and Cox proportional hazard models. In MM, pro- and active MMP-2 levels were significantly greater than for MMP-9 (P = 0.006, P<0.001). Active MMP-2 was significantly greater in MM than in UP (P=0.04). MMP-2 activity was equivalent between IP and MM, but both pro- and active MMP-9 activities were greater in IP (P=0.02, P=0.009). While there were trends towards poor survival with increasing total and pro-MMP-2 activity (P=0.08) in univariate analysis, they were both independent poor prognostic factors in multivariate analysis in conjunction with weight loss (pro-MMP-2 P = 0.03, total MMP-2 P = 0.04). Total and pro-MMP-2 also contributed to the Cancer and Leukemia Group B prognostic groups. MMP-9 activities were not prognostic. Matrix metalloproteinases, and in particular MMP-2, the most abundant gelatinase, may play an important role in MM tumour growth and metastasis. Agents that reduce MMP synthesis and/or activity may have a role to play in the management of MM. © 2003 Cancer Research UK

    Promoción de la salud y entornos saludables

    Get PDF
    A forestar forestalAplicaci&oacute;n de un programa educativo participativo en salud&nbsp; bucal a una comunidad de adultos mayoresBiblioteca m&oacute;vil y su implementaci&oacute;n en el hospital Padre HurtadoConsumo de riesgo de alcohol en Chile: una propuesta innovadora de intervenci&oacute;nDise&ntilde;o de un programa interactivo de promoci&oacute;n de la salud vocal para NB1Encuentro formativo en promoci&oacute;n de salud y gesti&oacute;n de entornos saludables para TenoExperiencia docente: programa intersectorial de promoci&oacute;n/prevenci&oacute;n en preescolares de comunas vulnerables, Regi&oacute;n MetropolitanaFiltrado glomerular, m&eacute;todo preventivo aparici&oacute;n de fibrosis sist&eacute;mica nefrog&eacute;nica por gadolinio en examen de RMImplementaci&oacute;n de consejer&iacute;as en vida sana en APS, Regi&oacute;n de los R&iacute;osMedicina preventiva en feria libre de la poblaci&oacute;n San Gregorio: Cecof San Gregorio, Contagiando SaludMetodolog&iacute;a innovadora en la ense&ntilde;anza de una ectoparasitosisPrevenci&oacute;n de accidentes por mon&oacute;xido de carbono en edificios, Providencia 2002-2009Programa de promoci&oacute;n y prevenci&oacute;n en salud bucal para preescolaresPromoviendo h&aacute;bitos saludables en los vecinos de Re&ntilde;aca Alto, Vi&ntilde;a del Mar, 2009Rol de la capacitaci&oacute;n en la implementaci&oacute;n de acciones para la prevenci&oacute;n de la obesidadSatisfacci&oacute;n usuaria en el Cesfam Natales a un a&ntilde;o de su funcionamientoTres estrategias publicitarias y de comunicaci&oacute;n aplicadas al consumo de alcohol de bajo riesgoTropa de la salud: uso de los medios como forma de promover la salu

    Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases mRNA transcripts in the bronchial secretions of asthmatics

    Full text link
    Asthma is a chronic inflammatory disease characterized by profound extracellular matrix changes referred to as bronchial remodelling. In this study, we evaluated matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) mRNA expression in bronchial secretions of asthmatics and correlated MMPs modulations with the lung function as a reflection of the bronchial extracellular matrix remodelling. Quantitative RT-PCR was performed on cell pellets obtained from induced sputum in order to detect the mRNAs for MMP-1, -2, -3, -8, -9, -12, -13 TIMP-1, -2, while semiquantitative RT-PCR was performed to assess the expression of MMP-7, monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor-beta(1) (TGF-beta(1)). The mRNA transcripts for MMP-1, TIMP-1 and monocyte chemoattractant protein-1 (MCP-1) were increased in cell pellets of induced sputum from asthmatics when compared to controls (P<0.05), and the intensity of MMP-1 mRNA expression inversely correlated with the FEV(1) in asthmatics (r=-0.49, P<0.05). The MMP-1 mRNA/TIMP-1 mRNA ratio correlated with the levels of MCP-1 mRNA in asthmatics (r=0.47, P<0.05). There were no differences between the groups with respect to mRNA coding for MMP-2, -3, -7, -8, -9, -12, -13, -14, TIMP-2 and TGF-beta(1). We conclude that cells contained in the bronchial secretions from asthmatics express higher amounts of mRNA for MMP-1 and TIMP-1, perhaps related to an increased expression of MCP-1, which might contribute to the extracellular matrix changes observed during airway remodelling
    corecore