158 research outputs found

    Estimating yield potential in temperate high-yielding, direct-seeded US rice production systems

    Get PDF
    Accurate estimation of a crop’s yield potential (Yp) is critical to addressing long-term food security via identification of the exploitable yield gap. Due to lack of field data, efforts to quantify crop yield potential typically rely on crop models. Using the ORYZA rice crop model, we sought to estimate Yp of irrigated rice for two widely used rice varieties (M-206 and CXL745) in three major US rice-producing regions that together represent some of the highest yielding rice regions of the world. Three major issues with the crop model had to be addressed to achieve acceptable simulation of Yp; first, the model simulated leaf area index (LAI) and biomass agreed poorly for all direct-seeded systems using default settings;second, cold-induced sterility and associated yield losses were poorly simulated for environments with a large diurnal temperature variation; lastly, simulated Yp was sensitive to the specified definition of physiological maturity. Except for the simulation of cold-induced sterility, all issues could be remedied within the existing model structure. In contrast, simulation of cold-induced sterility posed a continuing challenge to accurate simulation—one that will likely require changes to ORYZA’s formulation. Estimates of Yp from the modified model were validated against large multi-year data sets of experimental yields covering the majority of US rice production areas. Validation showed the adjusted model simulated Yp well, with most top yields falling within 85% of Yp for both varieties (77% and 78% observed yields within15% of Yp for CXL745 and M-206 respectively). Maximum estimated Yp was 14.3 (range of 8.2–14.5) and14.5 (range of 8.7–15.3) t ha−1for the Southern US and CA, respectively

    Estimating yield potential in temperate high-yielding, direct-seeded US rice production systems

    Get PDF
    Accurate estimation of a crop’s yield potential (Yp) is critical to addressing long-term food security via identification of the exploitable yield gap. Due to lack of field data, efforts to quantify crop yield potential typically rely on crop models. Using the ORYZA rice crop model, we sought to estimate Yp of irrigated rice for two widely used rice varieties (M-206 and CXL745) in three major US rice-producing regions that together represent some of the highest yielding rice regions of the world. Three major issues with the crop model had to be addressed to achieve acceptable simulation of Yp; first, the model simulated leaf area index (LAI) and biomass agreed poorly for all direct-seeded systems using default settings;second, cold-induced sterility and associated yield losses were poorly simulated for environments with a large diurnal temperature variation; lastly, simulated Yp was sensitive to the specified definition of physiological maturity. Except for the simulation of cold-induced sterility, all issues could be remedied within the existing model structure. In contrast, simulation of cold-induced sterility posed a continuing challenge to accurate simulation—one that will likely require changes to ORYZA’s formulation. Estimates of Yp from the modified model were validated against large multi-year data sets of experimental yields covering the majority of US rice production areas. Validation showed the adjusted model simulated Yp well, with most top yields falling within 85% of Yp for both varieties (77% and 78% observed yields within15% of Yp for CXL745 and M-206 respectively). Maximum estimated Yp was 14.3 (range of 8.2–14.5) and14.5 (range of 8.7–15.3) t ha−1for the Southern US and CA, respectively

    The Innermost Stable Circular Orbit of Binary Black Holes

    Full text link
    We introduce a new method to construct solutions to the constraint equations of general relativity describing binary black holes in quasicircular orbit. Black hole pairs with arbitrary momenta can be constructed with a simple method recently suggested by Brandt and Bruegmann, and quasicircular orbits can then be found by locating a minimum in the binding energy along sequences of constant horizon area. This approach produces binary black holes in a "three-sheeted" manifold structure, as opposed to the "two-sheeted" structure in the conformal-imaging approach adopted earlier by Cook. We focus on locating the innermost stable circular orbit and compare with earlier calculations. Our results confirm those of Cook and imply that the underlying manifold structure has a very small effect on the location of the innermost stable circular orbit.Comment: 8 pages, 3 figures, RevTex, submitted to PR

    Switchgrass is a promising, high-yielding crop for California biofuel

    Full text link
    Ethanol use in California is expected to rise to 1.62 billion gallons per year in 2012, more than 90% of which will be trucked or shipped into the state. Switchgrass, a nonnative grass common in other states, has been identified as a possible high-yielding biomass crop for the production of cellulosic ethanol. The productivity of the two main ecotypes of switchgrass, lowland and upland, was evaluated under irrigated conditions across four diverse California ecozones - from Tulelake in the cool north to warm Imperial Valley in the south. In the first full year of production, the lowland varieties yielded up to 17 tons per acre of biomass, roughly double the biomass yields of California rice or maize. The yield response to nitrogen fertilization was statistically insignificant in the first year of production, except for in the Central Valley plots that were harvested twice a year. The biomass yields in our study indicate that switchgrass is a promising biofuel crop for California

    Kinetic vs. Thermal-Field-Theory Approach to Cosmological Perturbations

    Full text link
    A closed set of equations for the evolution of linear perturbations of homogeneous, isotropic cosmological models can be obtained in various ways. The simplest approach is to assume a macroscopic equation of state, e.g.\ that of a perfect fluid. For a more refined description of the early universe, a microscopic treatment is required. The purpose of this paper is to compare the approach based on classical kinetic theory to the more recent thermal-field-theory approach. It is shown that in the high-temperature limit the latter describes cosmological perturbations supported by collisionless, massless matter, wherein it is equivalent to the kinetic theory approach. The dependence of the perturbations in a system of a collisionless gas and a perfect fluid on the initial data is discussed in some detail. All singular and regular solutions are found analytically.Comment: 31 pages, 10 figures (uu encoded ps-file appended), REVTEX 3.0, DESY 94-040 / TUW-93-2

    Whispering to the Deaf: Communication by a Frog without External Vocal Sac or Tympanum in Noisy Environments

    Get PDF
    Atelopus franciscus is a diurnal bufonid frog that lives in South-American tropical rain forests. As in many other frogs, males produce calls to defend their territories and attract females. However, this species is a so-called “earless” frog lacking an external tympanum and is thus anatomically deaf. Moreover, A. franciscus has no external vocal sac and lives in a sound constraining environment along river banks where it competes with other calling frogs. Despite these constraints, male A. franciscus reply acoustically to the calls of conspecifics in the field. To resolve this apparent paradox, we studied the vocal apparatus and middle-ear, analysed signal content of the calls, examined sound and signal content propagation in its natural habitat, and performed playback experiments. We show that A. franciscus males can produce only low intensity calls that propagate a short distance (<8 m) as a result of the lack of an external vocal sac. The species-specific coding of the signal is based on the pulse duration, providing a simple coding that is efficient as it allows discrimination from calls of sympatric frogs. Moreover, the signal is redundant and consequently adapted to noisy environments. As such a coding system can be efficient only at short-range, territory holders established themselves at short distances from each other. Finally, we show that the middle-ear of A. franciscus does not present any particular adaptations to compensate for the lack of an external tympanum, suggesting the existence of extra-tympanic pathways for sound propagation

    Yield gap analysis of US rice production systems shows opportunities for improvement

    Get PDF
    Many assessments of crop yield gaps based on comparisons to actual yields suggest grain yields in highly intensified agricultural systems are at or near the maximum yield attainable. However, these estimates can be biased in situations where yields are below full yield potential. Rice yields in the US continue to increase annually, suggesting that rice yields are not near the potential. In the interest of directing future efforts towards areas where improvement is most easily achieved, we estimated yield potential and yield gaps in US rice production systems, which are amongst the highest yielding rice systems globally. Zones around fourteen reference weather stations were created, and represented 87% of total US rice harvested area. Rice yield potential was estimated over a period of 13–15 years within each zone using the ORYZA(v3) crop model. Yield potential ranged from 11.5 to 14.5 Mg ha−1, while actual yields varied from 7.4 to 9.6 Mg ha−1, or 58–76% of yield potential. Assuming farmers could exploit up to 85% of yield potential, yield gaps ranged from 1.1 to 3.5 Mg ha−1. Yield gaps were smallest in northern California and the western rice area of Texas, and largest in the southern rice area of California, southern Louisiana, and northern Arkansas/southern Missouri. Areas with larger yield gaps exhibited greater annual yield increases over the study period (35.7 kg ha−1 year −1 per Mg yield gap). Adoption of optimum management and hybrid rice varieties over the study period may explain annual yield increases, and may provide a means to further increase production via expanded adoption of current technologies

    Sustainable intensification for a larger global rice bowl.

    Get PDF
    Future rice systems must produce more grain while minimizing the negative environmental impacts. A key question is how to orient agricultural research & development (R&D) programs at national to global scales to maximize the return on investment. Here we assess yield gap and resource-use efficiency (including water, pesticides, nitrogen, labor, energy, and associated global warming potential) across 32 rice cropping systems covering half of global rice harvested area. We show that achieving high yields and high resource-use efficiencies are not conflicting goals. Most cropping systems have room for increasing yield, resource-use efficiency, or both. In aggregate, current total rice production could be increased by 32%, and excess nitrogen almost eliminated, by focusing on a relatively small number of cropping systems with either large yield gaps or poor resource-use efficiencies. This study provides essential strategic insight on yield gap and resource-use efficiency for prioritizing national and global agricultural R&D investments to ensure adequate rice supply while minimizing negative environmental impact in coming decades
    corecore