A closed set of equations for the evolution of linear perturbations of
homogeneous, isotropic cosmological models can be obtained in various ways. The
simplest approach is to assume a macroscopic equation of state, e.g.\ that of a
perfect fluid. For a more refined description of the early universe, a
microscopic treatment is required. The purpose of this paper is to compare the
approach based on classical kinetic theory to the more recent
thermal-field-theory approach. It is shown that in the high-temperature limit
the latter describes cosmological perturbations supported by collisionless,
massless matter, wherein it is equivalent to the kinetic theory approach. The
dependence of the perturbations in a system of a collisionless gas and a
perfect fluid on the initial data is discussed in some detail. All singular and
regular solutions are found analytically.Comment: 31 pages, 10 figures (uu encoded ps-file appended), REVTEX 3.0, DESY
94-040 / TUW-93-2