1,267 research outputs found

    Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium

    Full text link
    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates

    Conductance of the single-electron transistor: A comparison of experimental data with Monte Carlo calculations

    Full text link
    We report on experimental results for the conductance of metallic single-electron transistors as a function of temperature, gate voltage and dimensionless conductance. In contrast to previous experiments our transistor layout allows for a direct measurement of the parallel conductance and no ad hoc assumptions on the symmetry of the transistors are necessary. Thus we can make a comparison between our data and theoretical predictions without any adjustable parameter. Even for rather weakly conducting transistors significant deviations from the perturbative results are noted. On the other hand, path integral Monte Carlo calculations show remarkable agreement with experiments for the whole range of temperatures and conductances.Comment: 8 pages, 7 figures, revtex4, corrected typos, submitted to PR

    Correlation between ionic mobility and plastic flow events in NaPo3-NaCl-Na2SO4 glasses

    Get PDF
    We report on the evolution of the mechanical and electrical properties of sodium metaphosphate glasses with addition of sodium sulfate or sodium chloride. The addition of these two sodium salts converts the medium-range order of our glasses from 2D phosphate chains to a mixed 1D + 2D network similar to ionic glasses, while the short-range order of the phosphate units remains unaffected. Replacing the phosphate units by chloride ion monotonically decreases the glass transition temperature, but enhances the Young's modulus and moderately increases the ionic conductivity. On the other hand, the sulfate group decreases the glass transition temperature as well, though the Young's modulus remains constant, while the ionic conductivity strongly increases. The changes in conductivity are related to the enhancement of the ionic mobility in these glasses, which in turn affect the size and distribution of the plastic events taking place during indentation-driven deformation.Bruno Poletto Rodrigues, Rene Limbach, Gabriel Buzatto de Souza, Heike Ebendorff-Heidepriem and Lothar Wondracze

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule

    Ortho-to-para ratio of interstellar heavy water

    Get PDF
    Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star forming regions, and in particular the Class 0 protostar IRAS 16293-2422. The CHESS (Chemical HErschel Surveys of Star forming regions) Key Program aims at studying the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the HIFI instrument provide a unique opportunity to observe the fundamental 1,1,1 - 0,0,0 transition of the ortho-D2O molecule, inaccessible from the ground, and to determine the ortho-to-para D2O ratio. We have detected the fundamental transition of the ortho-D2O molecule at 607.35 GHz towards IRAS 16293-2422. The line is seen in absorption with a line opacity of 0.62 +/- 0.11 (1 sigma). From the previous ground-based observations of the fundamental 1,1,0 - 1,0,1 transition of para-D2O seen in absorption at 316.80 GHz we estimate a line opacity of 0.26 +/- 0.05 (1 sigma). We show that the observed absorption is caused by the cold gas in the envelope of the protostar. Using these new observations, we estimate for the first time the ortho to para D2O ratio to be lower than 2.6 at a 3 sigma level of uncertainty, to be compared with the thermal equilibrium value of 2:1.Comment: 5 pages, 5 figures, accepted the A&A HIFI Special Issue as a lette

    Indentation-Induced Structural Changes in Vitreous Silica Probed by in-situ Small-Angle X-Ray Scattering

    Get PDF
    The transient (or permanent) structural modifications which occur during local deformation of oxide glasses are typically studied on the basis of short-range data, for example, obtained through vibrational spectroscopy. This is in contrast to macroscopic observations, where variations in material density can usually not be explained using next-neighbor correlations alone. Recent experiments employing low-frequency Raman spectroscopy have pointed-out this issue, emphasizing that the deformation behavior of glasses is mediated through structural heterogeneity and drawing an analogy to granular media. Here, we provide additional support to this understanding, using an alternative experimental method. Structural modification of vitreous silica in the stress field of a sharp diamond indenter tip was monitored by in-situ small-angle X-ray scattering. The influenced zone during loading and after unloading was compared, demonstrating that changes in the position of the first sharp diffraction peak (FSDP) directly in the center of the indent are of permanent character. On the other hand, variations in the amplitude of electron density fluctuations (AEDF) appear to fully recover after load release. The lateral extent of the modifications and their relaxation are related to the short- to intermediate-range structure and elastic heterogeneity pertinent to the glass network. With support from Finite Element Analysis, we suggest that different structural length scales govern shear deformation and isotropic compaction in vitreous silica
    • …
    corecore