274 research outputs found

    The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay

    Full text link
    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear Physic

    Neutrinoless double-beta decay and seesaw mechanism

    Full text link
    From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino mass mechanism. Within this notion, for the inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the neutrinoless double-beta decay for nuclei of experimental interest with different sets of nuclear matrix elements. The present-day results of the calculation of the neutrinoless double-beta decay nuclear matrix elements are briefly discussed. We argue that if neutrinoless double-beta decay will be observed in future experiments sensitive to the effective Majorana mass in the inverted mass hierarchy region, a comparison of the derived ranges with measured half-lives will allow us to probe the standard seesaw mechanism assuming that future cosmological data will establish the sum of neutrino masses to be about 0.2 eV.Comment: Some changes in sections I, II, IV, and V; two new figures; additional reference

    Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay

    Full text link
    We investigate numerically how accurately one could constrain the strengths of different short-range contributions to neutrino-less double beta decay in effective field theory. Depending on the outcome of near-future experiments yielding information on the neutrino masses, the corresponding bounds or estimates can be stronger or weaker. A particularly interesting case, resulting in strong bounds, would be a positive signal of neutrino-less double beta decay that is consistent with complementary information from neutrino oscillation experiments, kinematical determinations of the neutrino mass, and measurements of the sum of light neutrino masses from cosmological observations. The keys to more robust bounds are improvements of the knowledge of the nuclear physics involved and a better experimental accuracy.Comment: 23 pages, 3 figures. Minor changes. Matches version published in JHE

    Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop (LRT2015), Seattle, March 201

    NEXT-100 Technical Design Report (TDR). Executive Summary

    Get PDF
    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (bbonu) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.Comment: 32 pages, 22 figures, 5 table

    Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector

    Get PDF
    The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is (2.6±0.2stat±0.4sys)×103(2.6\pm0.2_{\textrm{stat}}\pm0.4_{\textrm{sys}})\times10^{-3}~events~keVee1_{ee}^{-1}~kg1^{-1}~day1^{-1} in a 118~kg fiducial volume. The observed background rate is (3.6±0.4stat)×103(3.6\pm0.4_{\textrm{stat}})\times10^{-3}~events~keVee1_{ee}^{-1}~kg1^{-1}~day1^{-1}, consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy
    corecore