2,166 research outputs found

    Policy Responses to Large Accidents (Proceedings of the Conference on Policy Responses to Large Accidents, IIASA, 16-17 January 1989)

    Get PDF
    During 1988, the IIASA Risk Task Force invited a group of experts to form a collaborating network for a study on national and international responses to the accident at Chernobyl. This study dealt with responses of society to traumatic events which are able to change social structures for an extended time period. Specific issues included were: HOW do authorities react, what is the role and behavior of the media system, what are the decision making structures, how do international coordination systems function. The documentation of this activity will be published by a commercial publisher. During this work a need arose to broaden IIASA's exposure to opinions and results from experts in the field of risk research. For this reason a Conference on "Policy Responses to Large Accidents" was held at IIASA from 16-17 January, 1989. The papers presented at this conference have been compiled into this volume. They are included as delivered by the authors without additional editing

    InAs-AlSb quantum wells in tilted magnetic fields

    Full text link
    InAs-AlSb quantum wells are investigated by transport experiments in magnetic fields tilted with respect to the sample normal. Using the coincidence method we find for magnetic fields up to 28 T that the spin splitting can be as large as 5 times the Landau splitting. We find a value of the g-factor of about 13. For small even-integer filling factors the corresponding minima in the Shubnikov-de Haas oscillations cannot be tuned into maxima for arbitrary tilt angles. This indicates the anti-crossing of neighboring Landau and spin levels. Furthermore we find for particular tilt angles a crossover from even-integer dominated Shubnikov-de Haas minima to odd-integer minima as a function of magnetic field

    Machine Learning for Robot Grasping and Manipulation

    Get PDF
    Robotics as a technology has an incredible potential for improving our everyday lives. Robots could perform household chores, such as cleaning, cooking, and gardening, in order to give us more time for other pursuits. Robots could also be used to perform tasks in hazardous environments, such as turning off a valve in an emergency or safely sorting our more dangerous trash. However, all of these applications would require the robot to perform manipulation tasks with various objects. Today's robots are used primarily for performing specialized tasks in controlled scenarios, such as manufacturing. The robots that are used in today's applications are typically designed for a single purpose and they have been preprogrammed with all of the necessary task information. In contrast, a robot working in a more general environment will often be confronted with new objects and scenarios. Therefore, in order to reach their full potential as autonomous physical agents, robots must be capable of learning versatile manipulation skills for different objects and situations. Hence, we have worked on a variety of manipulation skills to improve those capabilities of robots, and the results have lead to several new approaches, which are presented in this thesis Learning manipulation skills is, however, an open problem with many challenges that still need to be overcome. The first challenge is to acquire and improve manipulation skills with little to no human supervision. Rather than being preprogrammed, the robot should be able to learn from human demonstrations and through physical interactions with objects. Learning to improve skills through trial and error learning is a particularly important ability for an autonomous robot, as it allows the robot to handle new situations. This ability also removes the burden from the human demonstrator to teach a skill perfectly, as a robot is allowed to make mistakes if it can learn from them. In order to address this challenge, we present a continuum-armed bandits approach for learning to grasp objects. The robot learns to predict the performances of different grasps, as well as how certain it is of this prediction, and selects grasps accordingly. As the robot tries more grasps, its predictions become more accurate, and its grasps improve accordingly. A robot can master a manipulation skill by learning from different objects in various scenarios. Another fundamental challenge is therefore to efficiently generalize manipulations between different scenarios. Rather than relearning from scratch, the robot should find similarities between the current situation and previous scenarios in order to reuse manipulation skills and task information. For example, the robot can learn to adapt manipulation skills to new objects by finding similarities between them and known objects. However, only some similarities between objects will be relevant for a given manipulation. The robot must therefore also learn which similarities are important for adapting the manipulation skill. We present two object representations for generalizing between different situations. Contacts between objects are important for many manipulations, but it is difficult to define general features for representing sets of contacts. Instead, we define a kernel function for comparing contact distributions, which allows the robot to use kernel methods for learning manipulations. The second approach is to use warped parameters to define more abstract features, such as areas and volumes. These features are defined as functions of known object models. The robot can compute these parameters for novel objects by warping the shape of the known object to match the unknown object. Learning about objects also requires the robot to reconcile information from multiple sensor modalities, including touch, hearing, and vision. While some object properties will only be observed by specific sensor modalities, other object properties can be determined from multiple sensor modalities. For example, while color can only be determined by vision, the shape of an object can be observed using vision or touch. The robot should use information from all of its senses in order to quickly learn about objects. We explain how the robot can learn low-dimensional representations of tactile data by incorporating cues from vision data. As touching an object usually occludes the surface, the proposed method was designed to work with weak pairings between the data in the two sensor modalities. The robot can also learn more efficiently if it reuses skills between different tasks. Rather than relearn a skill for each new task, the robot should learn manipulation skills that can be reused for multiple tasks. For an autonomous robot, this would require the robot to divide tasks into smaller steps. Dividing tasks into smaller parts makes it easier to learn the corresponding skills. If a step is a part of many tasks, then the robot will have more opportunities to practice the associated skill, and more tasks will benefit from the resulting performance improvement. In order to learn a set of useful subtasks, we propose a probabilistic model for dividing manipulations into phases. This model captures the conditions for transitioning between different phases, which represent subgoals and constraints of the overall tasks. The robot can use the model together with model-based reinforcement learning in order to learn skills for moving between phases. When confronted with a new task, the robot will have to select a suitable sequence of skills to execute. The robot must therefore also learn to select which manipulation to execute in the current scenario. Selecting sequences of motor primitives is difficult, as the robot must take into consideration the current task, state, and future actions when selecting the next motor skill to execute. We therefore present a value function method for selecting skills in an optimal manner. The robot learns the value function for the continuous state space using a flexible non-parametric model-based approach. Learning manipulation skills also poses certain challenges for learning methods. The robot will not have thousands of samples when learning a new manipulation skill, and must instead actively collect new samples or use data from similar scenarios. The learning methods presented in this thesis are, therefore, designed to work with relatively small amounts of data, and can generally be used during the learning process. Manipulation tasks also present a spectrum of different problem types. Hence, we present supervised, unsupervised, and reinforcement learning approaches in order to address the diverse challenges of learning manipulations skills

    Axisymmetric pulse recycling and motion in bulk semiconductors

    Full text link
    The Kroemer model for the Gunn effect in a circular geometry (Corbino disks) has been numerically solved. The results have been interpreted by means of asymptotic calculations. Above a certain onset dc voltage bias, axisymmetric pulses of the electric field are periodically shed by an inner circular cathode. These pulses decay as they move towards the outer anode, which they may not reach. As a pulse advances, the external current increases continuously until a new pulse is generated. Then the current abruptly decreases, in agreement with existing experimental results. Depending on the bias, more complex patterns with multiple pulse shedding are possible.Comment: 8 pages, 15 figure

    Issues and Trends in Risk Research (Proceedings of two meetings at IIASA: "Technological Risk in Modern Society" [18-20 March 1988] and "Safe Technological Systems" [11-12 May 1988])

    Get PDF
    Research on risks resulting from our highly technological society has a long tradition at IIASA and has firmly established the institute as a center for a growing network of scientists concerned with technological risks. IIASA's research has been characterized by a small and dynamic group of scientists from many different disciplines and countries working together on a concrete technological risk problem. A major strength of the research has been its continuing focus on substantive problem areas with an evolving and often pioneering conceptual and scientific approach. Thus, IIASA has made important contributions to the general "risk field in topics ranging from "decision making under uncertainty" and the "perception of risks" to the role of risk analysts in political and institutional processes. At its June 1986 meeting, IIASA's Council decided to consolidate and strengthen the institute's research on technological risk. Extensive discussions within the institute and with outside organizations have taken place in an effort to ensure an optimal choice of issues to be addressed from the point of view of relevance and access to knowledge in the field. It was felt necessary to enter a fact-finding phase in order to evaluate the latest trends in risk research and to arrive at a meaningful set of issues on which to concentrate further research undertaken by the institute. Two meetings have been organized to this end: 1. Technological Risk in Modern Society: This meeting took place in Laxenburg from March 18-20, 1987, and was organized by IIASA in collaboration with the International Atomic Energy Agency (IAEA). Its goal was to design a research agenda for work related to safety issues and to the control and management of accidents in power systems or other potentially high-risk utilities. 2. Safe Technological Systems: This workshop was organized exclusively by IIASA and took place at the Institute from May 11-12, 1987. Instead of taking a given design and looking at ways and means to improve its safety, the meeting attempted to look at the impact of design principles and different types of trade-offs on the generic safety of technological systems. After numerous accidents in technological systems, it has become urgent to address the issue of how to improve the safety of technological systems. There have been discussions on inherently safe nuclear power plants, for example, but the general concept of inherently safe systems is subject to debate. Nevertheless, it is clear that in future system design, safety must assume a much more important role than in the past. As the two meetings are closely related to each other, it was decided, instead of creating two separate proceedings volumes as originally planned, to combine the outcomes of both meetings into one logical volume. This allowed us to rearrange the topics across the two meetings, thereby arriving at a more coherent documentation. The papers included have been brought into proper context as far as possible, independently of in which session or workshop they were presented. In most cases, they are included as delivered by authors, without additional editing. The purpose of these proceedings in strictly documentary without emphasis on layout, style or thematic consistency

    Universality of the Gunn effect: self-sustained oscillations mediated by solitary waves

    Get PDF
    The Gunn effect consists of time-periodic oscillations of the current flowing through an external purely resistive circuit mediated by solitary wave dynamics of the electric field on an attached appropriate semiconductor. By means of a new asymptotic analysis, it is argued that Gunn-like behavior occurs in specific classes of model equations. As an illustration, an example related to the constrained Cahn-Allen equation is analyzed.Comment: 4 pages,3 Post-Script figure

    Free boundary problems describing two-dimensional pulse recycling and motion in semiconductors

    Full text link
    An asymptotic analysis of the Gunn effect in two-dimensional samples of bulk n-GaAs with circular contacts is presented. A moving pulse far from contacts is approximated by a moving free boundary separating regions where the electric potential solves a Laplace equation with subsidiary boundary conditions. The dynamical condition for the motion of the free boundary is a Hamilton-Jacobi equation. We obtain the exact solution of the free boundary problem (FBP) in simple one-dimensional and axisymmetric geometries. The solution of the FBP is obtained numerically in the general case and compared with the numerical solution of the full system of equations. The agreement is excellent so that the FBP can be adopted as the basis for an asymptotic study of the multi-dimensional Gunn effect.Comment: 19 pages, 9 figures, Revtex. To appear in Phys. Rev.

    No differences in value-based decision-making due to use of oral contraceptives

    Get PDF
    Fluctuating ovarian hormones have been shown to affect decision-making processes in women. While emerging evidence suggests effects of endogenous ovarian hormones such as estradiol and progesterone on value-based decision-making in women, the impact of exogenous synthetic hormones, as in most oral contraceptives, is not clear. In a between-subjects design, we assessed measures of value-based decision-making in three groups of women aged 18 to 29 years, during (1) active oral contraceptive intake (N = 22), (2) the early follicular phase of the natural menstrual cycle (N = 20), and (3) the periovulatory phase of the natural menstrual cycle (N = 20). Estradiol, progesterone, testosterone, and sex-hormone binding globulin levels were assessed in all groups via blood samples. We used a test battery which measured different facets of value-based decision-making: delay discounting, risk-aversion, risk-seeking, and loss aversion. While hormonal levels did show the expected patterns for the three groups, there were no differences in value-based decision-making parameters. Consequently, Bayes factors showed conclusive evidence in support of the null hypothesis. We conclude that women on oral contraceptives show no differences in value-based decision-making compared to the early follicular and periovulatory natural menstrual cycle phases. Copyright © 2022 Lewis, Kimmig, Kroemer, Pooseh, Smolka, Sacher and Derntl

    Stationary states and phase diagram for a model of the Gunn effect under realistic boundary conditions

    Get PDF
    A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly stablished.Comment: 10 pages, 6 Post-Script figure

    Elasticity Theory Connection Rules for Epitaxial Interfaces

    Full text link
    Elasticity theory provides an accurate description of the long-wavelength vibrational dynamics of homogeneous crystalline solids, and with supplemental boundary conditions on the displacement field can also be applied to abrupt heterojunctions and interfaces. The conventional interface boundary conditions, or connection rules, require that the displacement field and its associated stress field be continuous through the interface. We argue, however, that these boundary conditions are generally incorrect for epitaxial interfaces, and we give the general procedure for deriving the correct conditions, which depend essentially on the detailed microscopic structure of the interface. As a simple application of our theory we analyze in detail a one-dimensional model of an inhomogeneous crystal, a chain of harmonic oscillators with an abrupt change in mass and spring stiffness parameters. Our results have implications for phonon dynamics in nanostructures such as superlattices and nanoparticles, as well as for the thermal boundary resistance at epitaxial interfaces.Comment: 7 pages, Revte
    • …
    corecore