48 research outputs found

    SiO2 glass density to lower-mantle pressures

    Get PDF
    The convection or settling of matter in the deep Earth’s interior is mostly constrained by density variations between the different reservoirs. Knowledge of the density contrast between solid and molten silicates is thus of prime importance to understand and model the dynamic behavior of the past and present Earth. SiO2 is the main constituent of Earth’s mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO2 glass up to 110 GPa, doubling the pressure range for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO2 minerals above 60 GPa. The density data present two discontinuities at ∼17 and ∼60  GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO2 glass becomes denser than MgSiO3 glass at ∼40  GPa, and its density becomes identical to that of MgSiO3 glass above 80 GPa. Our results on SiO2 glass may suggest that a variation of SiO2 content in a basaltic or pyrolitic melt with pressure has at most a minor effect on the final melt density, and iron partitioning between the melts and residual solids is the predominant factor that controls melt buoyancy in the lowermost mantle

    Non-basal dislocations should be accounted for in simulating ice mass flow

    Get PDF
    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects – the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [c][c] or 〈c+a〉〈c+a〉 Burgers vectors. These [c][c] or 〈c+a〉〈c+a〉 dislocations represent up to 35%35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change

    QUEST: A New Frontiers Uranus Orbiter Mission Concept Study

    Get PDF
    The ice giant planets, Uranus and Neptune, are fundamentally different from the gas giant and terrestrial planets. Though ice giants represent the most common size of exoplanet and possess characteristics that challenge our understanding of the way our solar system formed and evolved, they remain the only class of planetary object without a dedicated spacecraft mission. The inclusion of a Uranus orbiter as the third highest priority Flagship mission in the NASA Planetary Science Decadal Survey “Vision and Voyages for Planetary Science in the Decade 2013–2022” indicates a high level of support for exploration of the ice giants by the planetary science community. However, given the substantial costs associated with a flagship mission, it is critical to explore lower cost options if we intend to visit Uranus within an ideal launch window of 2029 - 2034 when a Jupiter gravity assist becomes available. In this paper, we describe the Quest to Uranus to Explore Solar System Theories (QUEST), a New Frontiers class Uranus orbiter mission concept study performed at the 30th Annual NASA/JPL Planetary Science Summer Seminar. The proposed QUEST platform is a spin-stabilized spacecraft designed to undergo highly elliptical, polar orbits around Uranus during a notional one-year primary science mission. The proposed major science goals of the mission are (1) to use Uranus as a natural laboratory to better understand the dynamos that drive magnetospheres in the solar system and beyond and (2) to identify the energy transport mechanisms in Uranus' magnetic, atmospheric, and interior environments in contrast with the other giant planets. With substantial mass, power, and cost margins, this mission concept demonstrates a compelling, feasible option for a New Frontiers Uranus orbiter mission

    Titan: Earth-like on the outside, ocean world on the inside

    Get PDF
    Thanks to the Cassini-Huygens mission, Titan, the pale orange dot of Pioneer and Voyager encounters, has been revealed to be a dynamic, hydrologically shaped, organic-rich ocean world offering unparalleled opportunities to explore prebiotic chemistry. And while Cassini-Huygens revolutionized our understanding of each of the three "layers" of Titan-the atmosphere, the surface, and the interior-we are only beginning to hypothesize how these realms interact. In this paper, we summarize the current state of Titan knowledge and discuss how future exploration of Titan would address some of the next decade's most compelling planetary science questions. We also demonstrate why exploring Titan, both with and beyond the Dragonfly New Frontiers mission, is a necessary and complementary component of an Ocean Worlds Program that seeks to understand whether habitable environments exist elsewhere in our solar system

    STUDY OF THE MAGNETIC INTERACTIONS IN A BIMETALLIC COMPLEX CuII (salen) NiII (hfa)2 BY POLARISED NEUTRON DIFFRACTION

    No full text
    The long distance magnetic interactions in the complex CuII (salen) NiII (hfa)2 are investigated by polarised neutron diffraction, which permits to determine the magnetisation density. The role of the oxygen bridging ligands in the antiferromagnetic Cu... Ni interaction is demonstrated

    Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear

    Get PDF
    Torsion experiments were performed in polycrystalline ice at high temperature (0.97 Tm) to reproduce the simple shear kinematics that are believed to dominate in ice streams and at the base of fast-flowing glaciers. As clearly documented more than 30 years ago, under simple shear ice develops a two-maxima c axis crystallographic preferred orientation (CPO), which evolves rapidly into a single cluster CPO with a c axis perpendicular to the shear plane. Dynamic recrystallization mechanisms that occur in both laboratory conditions and naturally deformed ice are likely candidates to explain the observed CPO evolution. In this study, we use electron backscatter diffraction (EBSD) and automatic ice texture analyzer (AITA) to characterize the mechanisms accommodating deformation, the stress and strain heterogeneities that form under torsion of an initially isotropic polycrystalline ice sample at high temperature, and the role of dynamic recrystallization in accommodating these heterogeneities. These analyses highlight an interlocking microstructure, which results from heterogeneity-driven serrated grain boundary migration, and sub-grain boundaries composed of dislocations with a [c]-component Burgers vector, indicating that strong local stress heterogeneity develops, in particular, close to grain boundaries, even at high temperature and high finite shear strain. Based on these observations, we propose that nucleation by bulging, assisted by sub-grain boundary formation and followed by grain growth, is a very likely candidate to explain the progressive disappearance of the c axis CPO cluster at low angle to the shear plane and the stability of the one normal to it. We therefore strongly support the development of new polycrystal plasticity models limiting dislocation slip on non-basal slip systems and allowing for efficient accommodation of strain incompatibilities by an association of bulging and formation of sub-grain boundaries with a significant [c] component

    Enrichissement de la dimension des données factuelles pour la conception de modèles multidimensionnels: application à la biodiversité des oiseaux

    No full text
    International audienceData warehouses (DW) and OLAP systems are technologies allowing the on-line analysis of huge volume of data according to decision-makers' needs. Designing DW involves taking into account functional requirements and data sources (mixed design methodology). But, for complex applications, existing automatic design methodologies seem inecient. In some cases, decisionmakers need querying, as a dimension, data which have been defined as facts by actual automatic mixed approachs. Therefore, in this paper, we offer a new mixed renement methodology relevant to constellation multidimensional schema. The proposed methodolgy allows to decisionmakers to enrich a dimension with factual data. In order to validate our theoretical proposals, we have implemented an enrichment tool and we have tested it on a real case study from bird biodiversit
    corecore