295 research outputs found
Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans
Myelination, the insulating ensheathment of axons by oligodendrocytes, is thought to both optimize signal propagation and provide metabolic support. Despite the well-established physiological importance of myelination to neuronal function, relatively little is known about the myelination of GABAergic interneurons in the cerebral cortex. Here, we report that a large fraction of myelin in mouse cerebral cortex ensheaths GABAergic interneurons, reaching up to 80% in hippocampal subregions. Moreover, we find that a very high proportion of neocortical and hippocampal parvalbumin (PV) interneurons exhibit axonal myelination. Using a combination of intracellular recordings and biocytin labeling of ex vivo human neocortex, we also confirm that axons of fast-spiking PV interneurons are extensively myelinated in the human brain. PV interneuron myelination in both mice and humans exhibits a stereotyped topography with a bias towards proximal axonal segments and relatively short internodes (∼27 μm) interspersed with branch points. Interestingly, myelin-deficient Shiverer mice exhibit an increased density and more proximal location of en passant boutons, suggesting that myelination might function in part to regu
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
Coherent manipulation of binary degrees of freedom is at the heart of modern
quantum technologies. Graphene offers two binary degrees: the electron spin and
the valley. Efficient spin control has been demonstrated in many solid state
systems, while exploitation of the valley has only recently been started, yet
without control on the single electron level. Here, we show that van-der Waals
stacking of graphene onto hexagonal boron nitride offers a natural platform for
valley control. We use a graphene quantum dot induced by the tip of a scanning
tunneling microscope and demonstrate valley splitting that is tunable from -5
to +10 meV (including valley inversion) by sub-10-nm displacements of the
quantum dot position. This boosts the range of controlled valley splitting by
about one order of magnitude. The tunable inversion of spin and valley states
should enable coherent superposition of these degrees of freedom as a first
step towards graphene-based qubits
Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans
Myelination, the insulating ensheathment of axons by oligodendrocytes, is thought to both optimize signal propagation and provide
metabolic support. Despite the well-established physiological importance of myelination to neuronal function, relatively little is
known about the myelination of GABAergic interneurons in the cerebral cortex. Here, we report that a large fraction of myelin in
mouse cerebral cortex ensheaths GABAergic interneurons, reaching up to 80% in hippocampal subregions. Moreover, we find that a
very high proportion of neocortical and hippocampal parvalbumin (PV) interneurons exhibit axonal myelination. Using a
combination of intracellular recordings and biocytin labeling of ex vivo human neocortex, we also confirm that axons of fast-spiking
PV interneurons are extensively myelinated in the human brain. PV interneuron myelination in both mice and humans exhibits a
stereotyped topography with a bias towards proximal axonal segments and relatively short internodes (~27 μm) interspersed with
branch points. Interestingly, myelin-deficient Shiverer mice exhibit an increased density and more proximal location of en passant
boutons, suggesting that myelination might function in part to regulate synapse formation along PV interneuron axons. Taken
together, fast-spiking interneuron myelination is likely to have broad implications for cerebral cortex function in health and disease
Small-cell lung cancer in England: trends in survival and chemotherapy using the National Lung Cancer Audit
Background: The purpose of this study was to identify trends in survival and chemotherapy use for individuals with smallcell lung cancer (SCLC) in England using the National Lung Cancer Audit (NLCA).
Methods: We used data from the NLCA database to identify people with histologically proven SCLC from 2004–2011. We
calculated the median survival by stage and assessed whether patient characteristics changed over time. We also assessed whether the proportion of patients with records of chemotherapy and/or radiotherapy changed over time.
Results: 18,513 patients were diagnosed with SCLC in our cohort. The median survival was 6 months for all patients, 1 year for those with limited stage and 4 months for extensive stage. 69% received chemotherapy and this proportion changed very slightly over time (test for trends p = 0.055). Age and performance status of patients remained stable over the study period, but the proportion of patients staged increased (p-value,0.001), mainly because of improved data completeness. There has been an increase in the proportion of patients that had a record of receiving both chemotherapy and radiotherapy each year (from 19% to 40% in limited and from 9% to 21% in extensive stage from 2004 to 2011). Patients who received chemotherapy with radiotherapy had better survival compared with any other treatment (HR 0.24, 95% CI 0.23–0.25).
Conclusion: Since 2004, when the NLCA was established, the proportion of patients with SCLC having chemotherapy has remained static. We have found an upward trend in the proportion of patients receiving both chemotherapy and radiotherapy which corresponded to a better survival in this group, but as it only applied for a small proportion of patients, it was not enough to change the overall survival
Genetic population structure of Anopheles gambiae in Equatorial Guinea
BACKGROUND: Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and Annobón, and from continental Equatorial Guinea (EG) and Gabon. METHODS: Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in Annobón) and three mainland samples (two in EG and one in Gabon). Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. RESULTS: High levels of genetic differentiation were found between the more geographically remote island of Annobón and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. CONCLUSION: The observed patterns of population structure seem to be governed by the presence of both physical (the ocean) and biological (the M-S form discontinuity) barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed
Changes in the ornithine cycle following ionising radiation cause a cytotoxic conditioning of the culture medium of H35 hepatoma cells
Cultured H35 hepatoma cells release a cytotoxic factor in response to irradiation with X-rays. When the conditioned medium from irradiated cells is given to nonirradiated cells, growth is inhibited and followed by cell death, possibly apoptosis, Analysis of the conditioned medium reveals a dramatic change in the ornithine (urea) cycle components after the irradiation. A strong decrease in medium arginine is accompanied with parallel increases in ornithine, citrulline and ammonia. The high level of ammonia appears to be largely responsible for the observed cytotoxicity. The development of hyperammonia by irradiated cells and the related toxicity depend on the radiation dose and the number of cells seeded thereafter for the medium conditioning. Development of cytotoxicity by irradiated cells is completely prevented with the arginase inhibitor L-norvaline, in arginine-deficient medium or when citrulline replaces arginine. These preventive measures result in subtoxic ammonia levels
Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells
The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive
growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this
study, the effects of the selective COX-2 inhibitor meloxicam alone and in combination with irradiation were investigated
on human glioma cells in vitro. A panel of three glioma cell lines (D384, U87 and U251) was used in the experiments from which U87 cells expressed constitutive
COX-2. The response to meloxicam and irradiation (dose-range of 0–6 Gy) was determined by the clonogenic assay, cell proliferation
was evaluated by growth analysis and cell cycle distribution by FACS. 24–72 h exposure to 250–750 μM meloxicam resulted in
a time and dose dependent growth inhibition with an almost complete inhibition after 24 h for all cell lines. Exposure to
750 μM meloxicam for 24 h increased the fraction of cells in the radiosensitive G2/M cell cycle phase in D384 (18–27%) and U251 (17–41%) cells. 750 μM meloxicam resulted in radiosensitization of D384 (DMF:2.19)
and U87 (DMF:1.25) cells, but not U251 cells (DMF:1.08). The selective COX-2 inhibitor meloxicam exerted COX-2 independent
growth inhibition and radiosensitization of human glioma cells
From Bench to Bedside: Attempt to Evaluate Repositioning of Drugs in the Treatment of Metastatic Small Cell Lung Cancer (SCLC)
BACKGROUNDS:
Based on in vitro data and results of a recent drug repositioning study, some medications approved by the FDA for the treatment of various non-malignant disorders were demonstrated to have anti-SCLC activity in preclinical models. The aim of our study is to confirm whether use of these medications is associated with survival benefit.
METHODS:
Consecutive patients with pathologically confirmed, stage 4 SCLC were analyzed in this retrospective study. Patients that were prescribed statins, aspirin, clomipramine (tricyclic antidepressant; TCA), selective serotonin reuptake inhibitors (SSRIs), doxazosin or prazosin (α1-adrenergic receptor antagonists; ADRA1) were identified.
RESULTS:
There were a total of 876 patients. Aspirin, statins, SSRIs, ADRA1, and TCA were administered in 138, 72, 20, 28, and 5 cases, respectively. A statistically significant increase in median OS was observed only in statin-treated patients when compared to those not receiving any of the aforementioned medications (OS, 8.4 vs. 6.1 months, respectively; p = 0.002). The administration of SSRIs, aspirin, and ADRA1 did not result in a statistically significant OS benefit (median OS, 8.5, 6.8, and 6.0 months, respectively). The multivariate Cox model showed that, besides age and ECOG PS, radiotherapy was an independent survival predictor (Hazard Ratio, 2.151; 95% confidence interval, 1.828-2.525; p <0.001).
CONCLUSIONS:
Results of drug repositioning studies using only preclinical data or small numbers of patients should be treated with caution before application in the clinic. Our data demonstrated that radiotherapy appears to be an independent survival predictor in stage 4 SCLC, therefore confirming the results of other prospective and retrospective studies
Effectiveness of temozolomide for primary glioblastoma multiforme in routine clinical practice
Temozolomide has been used as a standard therapy for the treatment of newly diagnosed glioblastoma multiforme since 2005. To assess the effectiveness of temozolomide in routine clinical practice, we conducted an observational study at Maastricht University Medical Centre (MUMC). Data of patients receiving radiotherapy and temozolomide between January 2005 and January 2008 were retrieved from a clinical database (radiochemotherapy group), as were data of patients in a historical control group from the period before 2005 treated with radiotherapy only (radiotherapy group). The primary endpoint was overall survival. A total of 125 patients with GBM were selected to form the study cohort. Median survival benefit was 4 months: the median overall survival was 12 months (95% CI, 9.7–14.3) in the group with radiochemotherapy with temozolomide, versus 8 months (95% CI, 5.3–10.7) in the group with only radiotherapy. Progression-free survival was 7 months (95% CI, 5.5–8.5) in the radiochemotherapy group and 4 months (95% CI, 2.9-5.1) in the group with only radiotherapy. The two-year survival rate was 18% with radiochemotherapy with temozolomide against 4% with radiotherapy alone. Concomitant treatment with radiotherapy and temozolomide followed by adjuvant temozolomide resulted in grade III or IV haematological toxic effects in 9% of patients. The addition of temozolomide to radiotherapy in routine clinical practice for newly diagnosed glioblastoma resulted in a clinically meaningful survival benefit with minimal haematological toxicity, which confirms the experience of previous trials and justifies the continued use of temozolomide in routine clinical practice
- …