49,516 research outputs found

    A neural network for mining large volumes of time series data

    Get PDF
    Efficiently mining large volumes of time series data is amongst the most challenging problems that are fundamental in many fields such as industrial process monitoring, medical data analysis and business forecasting. This paper discusses a high-performance neural network for mining large time series data set and some practical issues on time series data mining. Examples of how this technology is used to search the engine data within a major UK eScience Grid project (DAME) for supporting the maintenance of Rolls-Royce aero-engine are presented

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Winding number transitions at finite temperature in the Abelian-Higgs model

    Get PDF
    Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the sphaleron transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.Comment: final version, to appear in J. Phys.

    Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects

    Get PDF
    Starting from the Hamiltonian operator of the noncompensated two-sublattice model of a small antiferromagnetic particle, we derive the effective Lagrangian of a biaxial antiferromagnetic particle in an external magnetic field with the help of spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling through two types of barriers are obtained using the instanton method. The energy spectrum is found from Bloch theory regarding the periodic potential as a superlattice. The external magnetic field indeed removes Kramers' degeneracy, however a new quenching of the energy splitting depending on the applied magnetic field is observed for both integer and half-integer spins due to the quantum interference between transitions through two types of barriers.Comment: 9 pages, Latex, 4 Postscript figure

    Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect

    Get PDF
    The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (λm\lambda_m) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we experimentally explore in yttrium iron garnet (YIG)/platinum systems much further ranges compared with previous investigations. We observe that the nonlocal SSE signals at long distances (dd) clearly deviate from a typical exponential decay. Instead, they can be dominated by the nonlocal generation of magnon accumulation as a result of the temperature gradient present away from the heater, and decay geometrically as 1/d21/d^2. We emphasize the importance of looking only into the exponential regime (i.e., the intermediate distance regime) to extract λm\lambda_m. With this principle, we study λm\lambda_m as a function of temperature in two YIG films which are 2.7 and 50 μ\mum in thickness, respectively. We find λm\lambda_m to be around 15 μ\mum at room temperature and it increases to 40 μ\mum at T=T= 3.5 K. Finite element modeling results agree with experimental studies qualitatively, showing also a geometrical decay beyond the exponential regime. Based on both experimental and modeling results we put forward a general guideline for extracting λm\lambda_m from the nonlocal spin Seebeck effect.Comment: 9 pages, 7 figure

    Isospin breaking and f0(980)f_0(980)-a0(980)a_0(980) mixing in the η(1405)π0f0(980)\eta(1405) \to \pi^{0} f_0(980) reaction

    Get PDF
    We make a theoretical study of the η(1405)π0f0(980)\eta(1405) \to \pi^{0} f_0(980) and η(1405)π0a0(980)\eta(1405) \to \pi^{0} a_0(980) reactions with an aim to determine the isospin violation and the mixing of the f0(980)f_0(980) and a0(980)a_0(980) resonances. We make use of the chiral unitary approach where these two resonances appear as composite states of two mesons, dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f0(980)f_0(980) production in agreement with a BES experiment. As to the amount of isospin violation, or f0(980)f_0(980) and a0(980)a_0(980) mixing, assuming constant vertices for the primary η(1405)π0KKˉ\eta(1405)\rightarrow \pi^{0}K\bar{K} and η(1405)π0π0η\eta(1405)\rightarrow \pi^{0}\pi^{0}\eta production, we find results which are much smaller than found in the recent experimental BES paper, but consistent with results found in two other related BES experiments. We have tried to understand this anomaly by assuming an I=1 mixture in the η(1405)\eta(1405) wave function, but this leads to a much bigger width of the f0(980)f_0(980) mass distribution than observed experimentally. The problem is solved by using the primary production driven by ηKKˉ\eta' \to K^* \bar K followed by KKπK^* \to K \pi, which induces an extra singularity in the loop functions needed to produce the f0(980)f_0(980) and a0(980)a_0(980) resonances. Improving upon earlier work along the same lines, and using the chiral unitary approach, we can now predict absolute values for the ratio Γ(π0,π+π)/Γ(π0,π0η)\Gamma(\pi^0, \pi^+ \pi^-)/\Gamma(\pi^0, \pi^0 \eta) which are in fair agreement with experiment. We also show that the same results hold if we had the η(1475)\eta(1475) resonance or a mixture of these two states, as seems to be the case in the BES experiment
    corecore