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Abstract- Efficiently mining large volumes of time series data
is amongst the most challenging problems that are fundamental
in many fields such as industrial process monitoring, medical
data analysis and business forecasting. This paper discusses a
high-performance neural network for mining large time series
data set and some practical issues on time series data mining.
Examples of how this technology is used to search the engine data
within a major UK eScience Grid project (DAME) for supporting
the maintenance of Rolls-Royce aero-engine are presented.

I. INTRODUCTION

With the development of digital electronics and computer
hardware/software, data acquisition and storage are becoming
easy and inexpensive. Many databases today range in size up
to terabytes level. The development of intelligent data analysis
methodologies for efficiently discovering useful knowledge
from large volume data sets has attracted more and more
attention. Data mining is the process of efficiently extract
unknown information from databases. It is a powerful tool
for complex data analysis from large as well as small data set
in a reasonable time scale. A good review of data mining can
be found in [1] [6].
A time series signal is a set of observations of a variable at

successive times. Mining time series data can reveal important
knowledge for the subsequent processing such as indexing,
clustering, regression and classification. They can be found
in applications such as stock market price analysis/prediction,
electrocardiogram (ECG) data analysis, weather forecasting,
as well as many other industrial process-monitoring systems.
One of the big challenges of mining time series data is their
size and dimensionality. The performance of time series data
mining algorithms becomes one of the key issues. Many
papers have introduced new algorithms and applications on
time series data mining. However, few of them are actually
tested with large enough real world datasets. A recent survey
on time series data mining can be found in [7]. As the author
stated, many algorithms published have very little utility.

In this paper, we will present a neural network for fast
time series similarity matching. The algorithm has been suc-
cessfully implemented and used in a major UK eScience

pilot project (DAME') for analysis of Rolls-Royce aero-engine
data.
The rest of the paper is organised as follows. In Section-II,

we state some of the practical problems in mining time series.
These problems are common in many applications as well
as in the DAME project. In Section-Ill, we discuss a neural
network based on a high-performance neural network called
Correlation Matrix Memory (CMM) and how the time series
is encoded to suit the operations of the network. In Section-
IV we demonstrate the application of the technology using a
tool called Signal Data Explorer (SDE) developed within the
DAME project. In the last section, we summarise this work.

II. BACKGROUND

In an engine health monitoring system, indicators of the
health of an operating engine will be embedded in patterns
of vibration and performance data which are represented as
time series. An aero-engine on a civil airliner is capable
of generating 1GB of vibration and performance data per
engine per flight. A crucial part of engine health monitoring
is the detection of earliest possible signs of the presence of
features known to be associated with fault conditions and
for deviation from a model of the known operation of the
engine. The difficulties of such pattern search lie in the fact
that the search is over terabytes of data and the limited
knowledge of patterns representing known fault conditions.
Many conventional techniques are no longer adequate for
searching a non-precisely defined fault pattern within a huge
collection of data in response time that meets the operational
demands.

Grid technology allows the DAME system to be highly
distributed and yet still appear a single coherent system.
A high-performance search engine built within the DAME
system provides a distributed, parallel and efficient pattern
match service. In this paper, we will focus on a neural
network deployed in the DAME system for time series pattern
searching. The relevant issues which may be generic in other
time series data mining problems are also discussed. The

'The details ofDAME (Distributed Aircraft Maintenance Environment) can
be found on web site: http://www.cs.york.ac.uk/dame/
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discussion of details of other techniques used in the DAME
systems is out of the scope of this paper.

A. Similarity searching over time series

The most common operation of mining time series is search-
ing for similar patterns from time series datasets (similarity
searching). The basic form of similarity searching over time
series is subsequence matching which assumes that the length
of a main series is longer than that of the query and the query
is used to scan through the whole length of the main series.
Based on a pre-defined rule, the measure of each match (the
score of matching) in a similarity searching provides essential
information for the subsequent operation such as classification
or prediction. Given the length of a main time series L and
the length of a query series 1, (L > 1), the computational
complexity of subsequence matching on one set of data is
O(l(L - I + 1)). This is one of the key challenges facing the
performance of subsequence matching on huge collection of
time series datasets.

To reduce the computational complexity, many dimension-
ality reduction algorithms have been reported [8][10]. Most of
these algorithms are information non-preserving approaches.
They are highly application specific and not applicable in
many other cases. Re-sampling the over-sampled time series
is one way to reduce the dimensionality of the series. It is
an information preserving approach. Unfortunately, this is not
always applicable. The arbitrary length of query is another
problem to be tackled in the DAME pattern matching system
since the lengths of fault patterns vary and may not be defined
in advanced. There are only a few authors who have considered
this issue [8][9]. In the DAME project, due to the limited
knowledge and the uncertainty of the engine fault conditions,
there is no way to pre-construct a dimensionality reduced
dataset for general pattern searching.
A system may "hit" a similarity in a data set. The hit is

the local maximum of the matches which is within a given
tolerance threshold. The output of a similarity searching may
include all of hits or may generate only one hit (the best match)
per dataset. Together with the scores is the position of the
match that represents the time instance where the event (the
fault pattern) happened.

B. The measures

Measures are crucial for pattern matching and can be highly
application specific. It is important to choose a proper measure
for mining time series according to the application. Many
researchers do not use a correct measure when mining time
series. For example an attempt [7] was made to compare the
"usefulness" of measures that belonged to different classes
and designed to be used under different circumstances. This
comparison is not meaningful in general. For instance, Eu-
clidean distance may work well on searching for an identical
shape (there is no amplitude and time scaling on the query
and main series). Correlation is a well known measure for
matching signal with scaling on amplitude. For signal with
time variation/scaling, dynamic time warping may be a better

choice. Hence, there is no single measure that fits all. The
use of a measure is the balance of accuracy, performance and
many other conditions applied by an application.

In the DAME system, both the amplitude and shape of the
engine data are important. The system is currently designed
to support both correlation and Euclidean distance measures
which can be selected by a domain export before the searching
is invoked.
A time series with length n can be represented as a n-

dimensional vector. Given two sequences Q = {qq, q2, ..., qn}
and S = {si,s2, ... s}, correlation coefficient of the two
time series is defined as:

n
Corr(Q, S) ilsq
() tt-~~~~~1q,U

_QeS
Q llS

(1)

(2)

where * denotes the inner product of vectors Q and S. An
important physical meaning of (2) is that the correlation
coefficient of two vectors is the cosine of the angle between
the vectors.
The correlation coefficient of two vectors is independent

of both origin and scale since it is only defined by the angle
between the vectors. By interpreting the correlation coefficient
in this way, the estimation of measurement error introduced by
the quantisation noise becomes much easier. We will discuss
this in the next section. Eq.(2) involves the normalisation
operation for both the query (Q) and the main series (S).
For subsequence matching, the query can be normalised in
advanced of the search in order to simplify the computation.
Part of the square sum of the main series segment can be re-
used for the next subsequence. This can further optimise the
computation.
The Euclidean distance of two vectors is defined as:

D(Q,S) = IIQ-Sll (3)

Using the same components of (2), Euclidean distance measure
can be re-written as:

D(Q,S) = VIlQl2 + llSIl2 - 2Q * S. (4)

This provides means to compute the two measures at the same
time without significantly increasing the total searching time.

C. Multiple searching
The status of many industrial processes is often charac-

terised by more than one variable over time. For example,
in aero-engine diagnosis, several parameters over time may
be required to describe one condition. Searching for multiple
patterns from time series data is a more complicated prob-
lem than searching for a single pattern. This is because it
is not just a simple combination of separate single pattern
searching procedures but requires efficient collaboration of all
searching procedures, intelligent management of the searching
constraints applied and a clear, meaningful output is generated.

To search for multiple variables, records of the same group
in databases must be associated by some kind of identification
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parameters such as group-name or index. All the records in the
same group are synchronised by time. In this way, the search
engine can locate the records and compute the final results
correctly. An event window, Tw, is a time interval including
a set of hits across the variables. TI? is an important search
constraint to define a set of valid hits for multiple searches.
Properly used, the event window constraint can greatly reduce
the searching space. Each set of valid hits of a multiple
search procedure with n variables defines an n-dimensional
output vector. Conventional processing such as classification
or indexing can then be applied to the output vector to obtain
further information. In a particular case, multiple search can
be done by a simple neural network. However, in the DAME
system, this is done by a pattern matching controller (PMC)
on top of the neural networks and other search methods.

III. MINING TIME SERIES USING NEURAL NETWORKS

Input serie

{ 1, 2, 3}

0

0

s: 0

Score (S):

Output vector (0):

CMM

1 0 0 1 0

0 1 0 0 0

0 0 1 0 1

0 1 0 0 0

1 0 1 1 1

0 0 0 0 0

0 0 1 0 0

0 1 0 1 1

1 0 0 0 0

3 0 1 3 1

1 0 0 1 0

A common methodology for mining large volumes of data
is by deploying an imprecise but fast approximate search in
order to quickly obtain a small set of candidates. Then the
conventional methods may be applied to compute the final
output from the candidates (post-processing). Neural networks
can be used to efficiently extract similar patterns from time
series. One of the advantages of the technique used here is
that it can be easily implemented in hardware.

Advanced Uncertain Reasoning Architecture (AURA) is
a parallel pattern matching technology developed as a
set of general-purpose methods for searching large un-
structured datasets. The technology is based on a high-
performance neural network called Correlation Matrix Mem-
ory (CMM) [11] [12]. AURA provides fast approximate search
and match operations on large unstructured datasets. The latest
developments of AURA include the new AURA C++ library,
the hardware system (PERSENCE-II) and a Grid enabled
AURA pattern match service. There are a growing number of
applications for AURA. These include a postal address match-
ing, high-speed rule-matching systems [13], fraudulent benefit
claims detection system (FEDAURA), structure-matching (e.g
3D molecular structures) [14], human face recognition and
trademark-database searching [15].

A. Correlation matrix memories

A Correlation Matrix Memory (CMM) is a type of binary
associative neural network. A CMM with m columns and n
rows can be represented by a n xm matrix with binary weights,
M. Given a n-dimensional binary input pattern Ik and a m-
dimensional binary associated output pattern Ok, the CMM
learning can be written as:

Mk = Mk-1 U IT Ok. (5)

Where, Mkl and Mk are the CMM pattern before and after
the kth learning operation. U denotes a logical OR operation.
A CMM recall Si referring to input pattern Ii is given by:

Si = IM. (6)

Fig. 1. An example of CMM recall

The CMM recall Si is a m-dimensional integer vector. Each
element of Si is called the score of a CMM matching. Si
can be thresholded to from a binary vector, Qi, which is the
possible matches. Si can also be used as integer vector to
represent the measure of the match. Fig.1 shows an simplified
example of a CMM recall. The CMM is first trained as shown
in the figure. An input vector is then applied to the trained
CMM. Each row of the CMM is activated if the relevant
element of the input vector is set. S is the sum of all activated
rows of the CMM. 0 is a binary vector by applying threshold
2 to each element of vector S. Column vectors of the CMM is
said approximately similar to the input vector if the relevant
element of 0 is 1.
The computational efficiency of a CMM shown in Fig. 1 lies

in the fact that only the necessary nodes in the CMM pattern
are processed. In the above example, there are only three rows
with 2, 4 and 1 nodes on each of the rows respectively set as
1. To compute all of the 5 outputs, we need only to go through
2 + 4 + 1 = 7 rather than 5 x 9 = 45 nodes. To effectively
match two time series with a CMM, an efficient encoding
method must be applied in order to optimise the searching.

B. The hardware implementation ofAURA

The binary neural network based architecture used in AURA
can be efficiently implemented in hardware. PRESENCE II
(PaRallEl StructureEd Neural Computing Engine) is the latest
generation of AURA hardware implementation. At the heart of
the card is a large Field Programmable Gate Array. The FPGA
interfaces to a fast Digital Signal Processor, up to 4GBs of
SDRAM memory, two independent fast Zero-Bus-Turnaround
memories, dual high-speed data channels, Sundance digital I/O
header and a mezzanine expansion card connector. With each
on-board resource given an independent interface to the FPGA,
the designer is able to implement bus structures of choice,
rather than the board itself imposing a fixed wiring scheme.

690



Additional host system resources (system memory, I/O devices
etc) are accessible via the PCI bus as bus master. The details
of the AURA hardware implementation are out of the scope
of this paper.

C. Encoding the time series for CMM matching
Most of the current dimensional reduction techniques for

time series pattern match are the information non-preserving
approaches. Due to missing information, a lower bound ap-
plied does not guarantee a small enough number of approx-
imate matching results that are within the boundary, i.e. the
lower bound is not tight enough. The worst case is that the ap-
proximate search returns the whole set of original data. Hence
the post-processing will work on the full set of data and the
effort for approximate search becomes nugatory. As a result,
the total searching time may not be improved. The second
problem of such techniques is that a particular lower bound (as
well as the dimensional reduction algorithm) is usually valid
only for a specific measure, e.g. Euclidean distance measure.
To work on a different measure, different dimensional reduc-
tion algorithms are required. Such algorithms are not always
available and the use of multiple sets of dimensional reduced
data simply degrades the system performance and increases the
requirement for the system storages. These techniques do not
support either arbitrary query length or the desired measures.
To the best of our knowledge, there are no existing approaches
for time series pattern matching that meet well the DAME
system requirements.

In the DAME system, a differential encoding technique is
used to encode the time series data. A relevant low quantisation
precision is used in order to further reduce the repeated sample
values on the data. This will also reduce the computational
complexity on the CMM matching. The differential code is
then loaded to a CMM and the pattern match is done by
applying the AURA technique. Instead of applying a measure
which lower bounds the measures on the original data [7],
we prove that correlation measurement errors are predictable
and it is the function of the quantisation precision. Hence, one
can control the quantisation precision to ensure that a small
enough set of data returns from the approximate matching to
the post-processing. In many cases, the post-processing can be
ignored by using a proper quantisation precision on encoding
the data.

1) Differential encoding: The differential encoding is
widely used for data compression. Differential encoding does
not directly compress the data but reduce the repeated number
of sample values. A reasonably low quantisation precision
differential code can further reduce the number of repeated
values in the serial hence reduce the computation load for the
search. If the measurement error boundary of a search is pre-
dictable, balance between the processing time of approximate
search and post-processing can be made to optimise the overall
system performance.

Given a series of real value data X X{1, X2,* Xn}, the
differential code is defined as:

di = ADC(x4 - x-1i), (7)

where ADC() denotes a analogue-to-digit conversion. The
shortcoming of using (7) is the uncontrollable accumulation
encoding error. If the quantisation error is d and the length
of data is n, then the maximum encoding error will be n6.
This will cause serious distortion on the signal and lead
to mismatching. To overcome the problem of (7), feedback
encoding technique must be used.

There are several standard series signal encoding techniques
in communication systems. The popular types of these are
PCM (pulse code modulation), DPCM (differential pulse code
modulation) and DM (delta modulation)[4], [2], [3]. PCM
directly encodes the sample values of a signal while DPCM
and DM encode the difference of the values. A start value zo is
set before the encoding, a predictor (usually a feedback DAC)
generates the estimation signal zi and the difference of current
input signal xi and zi-1, 6i = i- zi-1, is encoded. After
a short start interval, the differential code will trace the input
signal within a given tolerance (e.g. half quantisation level).
The differential code series ci is given by:

Ci = ADC(xi- i-) (8)

where zi-1 is the estimation of input signal xi. Let A be the
quantisation step. zi (i > 0) is given by

i-i

zi = zo + A E Cn.
n=O

(9)

DM is a special case of DPCM where there are only two
quantisation levels.
The quantisation error is the difference between the original

input data and the encoding data,

=Xi - z . (10)

The time series eq = {ei} is called the quantisation noise. It
is common to assume that the quantisation noise is additive.
Details of quantisation noise analysis can be found on [4],
[2], [5] and elsewhere. The power of the quantisation noise is
represented by variance,

(J2= E( leq 12). (

For a uniform quantiser, the quantisation noise level is given
by,

2 A2
(J7=

12
(12)

If the noise from the signal channel can be neglected, quantisa-
tion is the only error source. The signal-to-noise ratio (power)
is then given by,

SNR= 22m, (13)

where m is the quantisation precision[4]. (13) is useful for the
estimation of boundary of the measurement errors.
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2) Estimation of the error boundary :In Section-II-B,
correlation coefficient is interpreted as the cosine of an angle
between the two vectors. In this section, we prove that the
boundary of the measurement errors for correlation is defined
by the quantisation precision.

Assuming aq is the angle between the two quantised vectors
and a is the angle of the two input vectors, the measurement
error boundary of estimate a by aq iS,

llaq - a1l <. q +8,, (14)

where Eq and E, are the maximum measurement errors on the
angle introduced by the quantisation errors. As shown in Fig.2,
the error angle is defined by,

1
sinE N , (15)

Substitute (13) to the above equation, we have

E = arcsin 2-m. (16)

For example, encoding the data by 4-bit quantisation precision,
the error angle is about 3.58°. If we want to search for similar
patterns with similarity measure (correlation coefficient) larger
than 0.9 (a < 25.80), the boundary for approximate match
is cos(25.8 + 2 x 3.58) = 0.84. All matches with measure
larger than 0.84 will be passed to the post-processing module
to obtain the final results.

It is clear that the error angle becomes larger when the
signal-to-noise ratio decreases. In practice, (16) can be re-
placed by a minimum ratio SNRmim. Notice (13) does not
involve the quantisation step A. One can choose a proper
quantisation step for each input signal so that the SNRs are
higher than a given value, SNRmim, for all data.

For Euclidean distance measure, measurement errors intro-
duced by quantisation noise is defined as:

where n is the length of the vector.

IV. EVALUATION AND EXPERIMENTAL RESULTS

A. Data reduction

Firstly we show how the differential encoding reduces the
non-zero data size. We use the term "saturation" to measure
this efficiency. Saturation is the percentage of the non-zero
data points referring to the whole data set. If a time series has
1,000,000 sample points and after encoding there are 400,000
points are zero, we call that the saturation of the data set is
60 percent. Given the saturation of the query vector Pq and
the main series Pm, the computational complexity, 0(p), of a
CMM is estimated as:

O(p) < Min(pq,pm). (19)
In fact, it is the probability when both a node in the CMM and
the relevant entry of the query vector take non-zero values.

Table-I lists the saturation values of 10 variables from the
DAME system. The saturations of original data before encod-
ing are 100 percent. Each set of data contains 24 records with
1285200 sample points. All data were encoded to differential
code with 8-bit quantisation precision. The saturations of
data passed a Gaussian filter are also listed in the table for
comparison. It is easy to see that the saturation of the code is
greatly reduced after the encoding.

TABLE I

DATA SATURATION COMPARISON

[ Data name SI S2 S3 IS4 1S5
Without filter 0.64 1 0.24 0.48 0.46 + 0.6
With filter 0.75 0.15 0.49 0.23 0.69
Data name S6 S7 S8 S9 Sio
Without filter 0.21 0.50 0.33 0.28 0.18
With filter 0.15 0.58 0.19 0.16 0.06

eE < ||eqj + llej.
The proof of (17) is straightforward by using the triangle
inequality. Assuming the maximum quantisation error is A

the boundary of measurement errors of Euclidean distance
measure is estimated by,

eE < mA, (18)

Fig. 2. The boundary of correlation measurement error

B. Performance and application example

The technology has been successfully used for engine data
analysis in the DAME system. A user interface and other
tools for signal processing are integrated into a tool called
Signal Data Explorer (SDE). The search engines in the DAME
system are distributed and can be invoked locally or remotely
(over the Grid) by the SDE. At the moment we have not

fully tested the hardware implementation. For a software
implementation, the system can search 10GB of raw ZMOD
engine data in less than 1 second on a standard PC (1.8GHz
P4 512MB, using subsequence matching. data rate 5Hz and
the duration of the query series is 100 seconds and the average

length of the records is 2.3 hours)
The following screen-shots show particular examples of

the operation of the SDE. The first example shows searching
for similar pattern with the input template from large volume
of history data store. The pattern segment that may belong to
a fault is selected by domain export and is highlighted as the
search template. The first four best matching are displayed in
the pop up windows. Search results are listed in the results
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window, as shown in Fig.3. The second example shows a

search for a particular operation pattern using the multiple
search functionality of the system. The two query patterns
are shown in Fig.4. The search constraint is to find the top
pattern on Fig.4 and then find the pattern on bottom of the
figure within the same record. The event window is set as

150 seconds (time between the two events). The four best
matches are shown in Fig.5. The search process collects all
operation patterns from the history data so that the values of
variable is firstly decreased and then increased within 150

Fig. 3. Searching for similar patterns

Fig. 4. Application examples 2: Templates for multiple searching

y= If 311731: Ap= 311 5.WllS231

Fig. 5. Application examples 2: Four best match patterns

seconds. A conventional approach can then be applied
to the results to obtain a more precise information of the
pattern.

V. CONCLUSIONS

We have presented a neural network for efficiently searching
for similar patterns from large volumes of time series datasets.
This work has tackled several problems that are important in
mining time series data but have not been undertaken by many
researchers. The technique has been successfully used in the
DAME system for aero-engine data analysis.
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