904 research outputs found

    Interactive visualization for information analysis in medical diagnosis

    Get PDF
    This paper investigates to what extend the findings and solutions of information analysis in intelligence analysis can be applied and transferred into the medical diagnosis domains. Interactive visualization is proposed to address some of the problems faced by both domain. Its design issues related to selected common problems are then discussed in details. Finally, a visual sense making system INVISQUE is used as an example to illustrate how the interactive visualization can be used to support information analysis and medical diagnosis

    Acquired heart block: A possible complication of patent ductus arteriosus in a preterm infant

    Get PDF
    A large patent ductus arteriosus (PDA) is a frequently encountered clinical problem in extremely low birth weight (ELBW) infants. It leads to an increased pulmonary blood flow and in a decreased or reversed diastolic flow in the systemic circulation, resulting in complications. Here we report a possible complication of PDA not previously published. On day 8 of life, a male ELBW infant (birth weight 650 g) born at a gestational age of 23 weeks and 3 days developed an atrioventricular block (AV block). The heart rate dropped from 168/min to 90/min, and the ECG showed a Wenckebach second-degree AV block and intraventricular conduction disturbances. Echocardiography demonstrated a PDA with a large left-to-right shunt and large left atrium and left ventricle with high contractility. Within several minutes after surgical closure of the PDA, the heart rate increased, and after 30 min the AV block had improved to a 1: 1 conduction ratio. Echocardiography after 2 h revealed a significant decrease of the left ventricular and atrial dimensions. Within 12 h, the AV block completely reversed together with the intraventricular conduction disturbances. We suggest that PDA with a large left-to-right shunt and left ventricular volume overload may lead to an AV block in an ELBW infant. Surgical closure of the PDA may be indicated. Copyright (C) 2007 S. Karger AG, Basel

    Quantitative Shape-Classification of Misfitting Precipitates during Cubic to Tetragonal Transformations: Phase-Field Simulations and Experiments

    Get PDF
    The effectiveness of the mechanism of precipitation strengthening in metallic alloys de-pends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ′′ precipitates in Ni-based alloys and tetragonal θ′ precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations. We employed the method of invariant moments for the consistent shape quantification of precipitates obtained from the simulation as well as those obtained from the experiment. Two well-defined shape-quantities are proposed: (i) a generalized measure for the particles aspect ratio and (ii) the normalized λ2, as a measure for shape deviations from an ideal ellipse of the given aspect ratio. Considering the size dependence of the aspect ratio of γ′′ precipitates, we find good agreement between the simulation results and the experiment. Further, the precipitates’ in-plane shape is defined as the central 2D cut through the 3D particle in a plane normal to the tetragonal c-axes of the precipitate. The experimentally observed in-plane shapes of γ′′-precipitates can be quantitatively reproduced by the phase-field model. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Investigation of modified nanopore arrays using FIB/SEM tomography

    Get PDF
    The investigation of electrochemical processes at the interface of two immiscible electrolyte solutions (ITIES) is of great interest for sensing applications, and serves as a surrogate to the study of biological transport phenomena, e.g. ion channels. Alongside e-beam lithography, focused ion beam (FIB) milling is an attractive method to prototype and fabricate nanopore arrays that support nanoITIES. Within this contribution, we explore the capability of FIB/scanning electron microscopy (SEM) tomography to visualize the actual pore structure and interfaces at silica-modified nanoporous membranes. The nanopores were also characterized by atomic force microscopy (AFM) using ultra-sharp AFM probes to determine the pore diameter, and using scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) spectroscopy, providing additional information on the elemental composition of deposits within the pores. Si-rich particles could be identified within the pores as well as at the orifice that had faced the organic electrolyte solution during electrochemical deposition. The prospects of the used techniques for investigating the interface at or within FIB-milled nanopores will be discussed
    • …
    corecore