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Abstract. Machine Learning (ML) studies algorithms which can learn
from data to gain knowledge from experience and to make decisions and
predictions. Health Informatics (HI) studies the effective use of proba-
bilistic information for decision making. The combination of both has
greatest potential to rise quality, efficacy and efficiency of treatment and
care. Health systems worldwide are confronted with “big data” in high
dimensions, where the inclusion of a human is impossible and automatic
ML (aML) show impressive results. However, sometimes we are con-
fronted with complex data, “little data”, or rare events, where aML-
approaches suffer of insufficient training samples. Here interactive ML
(iML) may be of help, particularly with a doctor-in-the-loop, e.g. in sub-
space clustering, k-Anonymization, protein folding and protein design.
However, successful application of ML for HI needs an integrated app-
roach, fostering a concerted effort of four areas: (1) data science, (2) algo-
rithms (with focus on networks and topology (structure), and entropy
(time), (3) data visualization, and last but not least (4) privacy, data
protection, safety & security.
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1 Introduction and Motivation

Since the early days of Machine Learning (ML) in the 1950ies [1] the goal was
to learn from data, to gain knowledge from experience and to make predictions.
The field accelerated by the introduction of statistical learning theory in the
late 1960ies; although it was at that time a purely theoretical analysis of the
problem of function estimation from a given collection of data [2]. With the
introduction of new statistical learning algorithms (e.g. support vector machine
[3]) statistical learning theory became more and more interesting as a tool for
developing algorithms of practical use for the estimation of multidimensional
functions [4].

Today, ML is the most growing subfield in computer science and Health
Informatics (HI) is the greatest application challenge [5,6]. This is not surprising,
because in the health domain we are confronted with probabilistic, uncertain,
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unknown, incomplete, heterogenous, noisy, dirty, unwanted and missing data sets
which endangers the modelling of artifacts. Moreover, in the biomedical world
we are confronted with a further problem: time. Whilst most computational
approaches assume homogeneity in time, people and processes in the health
domain are not homogenous in time and cannot be forecasted, sometimes it
can happen the completely unexpected. That makes automatic solutions in this
domain difficult, yet sometimes impossible.

A grand challenge in HI is to discover relevant structural patterns and/or
temporal patterns (“knowledge”) in such data, which are often hidden and not
accessible to the human expert but would be urgently needed for better deci-
sion support. Another problem is that most of the data sets in HI are weakly-
structured and non-standardized [7], and most data is in dimensions much higher
than 3, and despite human experts are excellent at pattern recognition in dimen-
sions of ≤3, high dimensional data sets make manual analysis difficult, yet often
impossible.

The adoption of data-intensive methods can be found throughout various
branches of health, leading e.g. to more evidence-based decision-making and to
help to go towards personalized medicine [8]: A grand goal of future biomedicine
is to tailor decisions, practices and therapies to the individual patient. Whilst
personalized medicine is the ultimate goal, stratified medicine has been the cur-
rent approach, which aims to select the best therapy for groups of patients who
share common biological characteristics. Here, ML approaches are indispens-
able, for example causal inference trees (CIT) and aggregated grouping, seeking
strategies for deploying such stratified approaches. Deeper insight of personalized
treatment can be gained by studying the personal treatment effects with ensem-
ble CITs [9]. Here the increasing amount of heterogenous data sets, in particular
“-omics” data, for example from genomics, proteomics, metabolomics, etc. [10]
make traditional data analysis problematic and optimization of knowledge dis-
covery tools imperative [11,12]. On the other hand, many large data sets are
indeed large collections of small data sets. This is particularly the case in per-
sonalized medicine where there might be a large amount of data, but there is
still a relatively small amount of data for each patient available [13]. Conse-
quently, in order to customize predictions for each individual it is necessary to
build a model for each patient along with the inherent uncertainties, and to
couple these models together in a hierarchy so that information can be “bor-
rowed” from other similar patients. This is called model personalization, and is
naturally implemented by using hierarchical Bayesian approaches including e.g.
hierarchical Dirichlet processes [14] or Bayesian multi-task learning [15].

This variety of problems in the application of ML for HI requires a syner-
gistic combination of various methodological approaches which are combined in
the HCI-KDD approach, which is described in Sect. 3. In Sect. 4 an example
curriculum is briefly discussed and Sect. 5 provides an outlook to three future
challenges.
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2 Glossary and Key Terms

automatic Machine Learning (aML) in bringing the human-out-of-the-loop is
the grand goal of ML and works well in many cases with “big data” [16].

Big Data is a buzz word to indicate the flood of data today; however, large data
sets are necessary for aML approaches to learn effectively, the problem is rather
in “dirty data” and sometimes we have large collections of “little data”.

Cognitive Science mainly deals with questions of human intelligence, problem
solving and decision making and is manifested to a large extent in the field of
Human–Computer Interaction (HCI) [17].

Computer Science today has a large focus on machine learning algorithms and
these are manifested to a large part in the field of Knowledge Discovery/Data
Mining (KDD). Deep Learning allows models consisting of multiple layers to
learn representations of data with multiple levels of abstraction, e.g. in speech
recognition, visual object recognition, object detection, genomics etc. [6].

Dimensionality of data is high, when the number of features p is larger than the
number of observations n by magnitudes. A good example for high dimensional
data is gene expression study data [18].

Entropy quantifies the expected value of information contained in data and can
be used as a measure of uncertainty, hence it is of tremendous importance for
HI with many applications to discover e.g. anomalies in data [19].

Health has been defined by the World Health Organization (WHO) in 1946 as
“a state of complete physical, mental, and social well-being” and is undeniably
one of the most important aspects concerning every human [20].

Health Informatics is concerned with the use of computational intelligence for
the management of processes relevant for human health and well-being, ranging
from the collective to the individual [21].

interactive Machine Learning (iML) in bringing the human-in-the-loop is nec-
essary if we have small amounts of data (“little data”), rare events or deal with
complex problems [22,23].

Knowledge Discovery (KDD) includes exploratory analysis and modeling of data
and the organized process to identify valid, novel, useful and understandable pat-
terns from these data sets [24].

Topological Data Mining uses algebraic geometry to recover parameters of mix-
tures of high-dimensional Gaussian distributions [25].

Visualization can be defined as transforming the symbolic into the geometric
and the graphical presentation of information, with the goal of providing the
viewer with a qualitative understanding of the information contents [12,26].
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3 The HCI-KDD Approach

The original idea of the HCI-KDD approach [8,27,28] is in combining aspects of
the best of two worlds: Human–Computer Interaction (HCI), with emphasis on
cognitive science, particularly dealing with human intelligence, and Knowledge
Discovery/Data Mining (KDD), with emphasis on machine learning, particularly
dealing with computational intelligence [29].

Cognitive science (CS) studies the principles of human learning from data to
understand intelligence. The Motto of Demis Hassabis from Google Deepmind
is “Solve intelligence - then solve everything else” [30]. Our natural surrounding
is in R

3 and humans are excellent in perceiving patterns out of data sets with
dimensions of ≤3. In fact, it is amazing how humans extract so much knowledge
from so little data [31] which is a perfect motivator for the concept of iML.

The problem in HI is that we are challenged with data of arbitrarily high
dimensions [7,18,32]. Within such data, relevant structural patterns and/or tem-
poral patterns (“knowledge”) are hidden, difficult to extract, hence not accessible
to a human. A grand challenge is to bring the results from high dimensions into
the lower dimension, where the health experts are working on 2D surfaces on
different devices (from tablet to large wall-displays), which can represent data
only in R

2.
Machine Learning (ML) studies the principles of computational learning from

data to understand intelligence [5]. Computational learning has been of general
interest for a very long time, but we are far away from solving intelligence:
facts are not knowledge and descriptions are not insight. A good example is the
famous book by Nobel prize winner Eric Kandel “Principles of Neural Science”
[33] which doubled in volume every decade - effectively, our goal should be to
make this book shorter!

HCI and KDD did not harmonize in the past. HCI had its focus on specific
experimental paradigms, embedded deeply in Cognitive Science; and aimed to
be cognitively/neutrally plausible. KDD had its focus on computational learning
problems and tried to optimize in the range of 1% because it was embedded in
Computer Engineering, and aimed to have working systems to solve practical
problems - whether mimicking the human brain or not.

Consequently, a concerted effort of both worlds and a comprehensive under-
standing of the data ecosystem along with a multi-disciplinary skill-set, encom-
passing seven specializations: (1) data science, (2) algorithms, (3) network sci-
ence, (4) graphs/topology, (5) time/entropy, (6) data visualization and visual
analytics, and (7) privacy, data protection, safety and security can be highly
beneficial for solving the aforementioned problems (Fig.1).

3.1 Research Track 1 DAT: Data Preprocessing, Integration, Fusion

Understanding the data ecosystem is of eminent importance in HI. Considering
the context in which the data is produced, we can determine between four large
data pools: (1) Biomedical research data (e.g. clinical trial data, -omics data
[10]), e.g. from genomic sequencing technologies (Next Generation Sequencing,
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Fig. 1. The big picture of the HCI-KDD approach: The horizontal process chain (blue
box) encompasses the whole machine learning pipeline from physical aspects of raw
data, to human aspects of data visualization; while the vertical topics (green box)
include important aspects of structure (graphs/networks), space (computational topol-
ogy) and time (entropy); privacy, data protection, safety and security are mandatory
topics within the health domain and provide kind of a base compartment (Color figure
online) (Image taken from hci-kdd.org)

NGS etc.), microarrays, transcriptomic technologies, proteomic and metabolomic
technologies, etc., which all plays important roles for biomarker discovery and
drug design [34,35]. (2) Clinical data (e.g. patient records, clinicians documen-
tations, medical terminologies (e.g. ICD, SNOMED-CT), medical surveys, labo-
ratory tests, clinical and physiological parameters, ECG, EEG etc.), (3) Health
business data (e.g. costs, utilization, management data, logistics, accounting,
billing, resource planning, prediction etc.), and (4) private patient data, pro-
duced by various customers and stakeholders outside the clinical context (e.g.,
wellness data, Ambient Assisted Living data, sport data, insurance data, etc.)
[36]. The US Department of Health and Human Services (HHS) created a tax-
onomy of health data with the following dimensions [37]: (1) Demographics and
socio-economic Data: age, race, sex, education, etc. (2) Health Status Data:
Health status of the patient, e.g., morbidities, problems, complaints, disabili-
ties, diagnoses, symptoms, etc. (3) Health Resources Data: Characteristics and
capacity of the health system, etc. (4) Healthcare Utilization Data: Characteris-
tics(e.g., time, duration, tests, procedures, treatment) about medical care visits
like discharge, stay, use of healthcare services, etc. (5) Healthcare Financing and
Expenditure Data: Costs, charges, insurance status, etc. (6) Healthcare Out-
comes of current and past prevention, treatments, etc. (7) Other data: -omics
data, environmental exposures, etc.

http://hci-kdd.org/
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Technically, there exist various levels of data structures [38] from physical
level as basic indissoluble unit (bit, Shannon) to the logical level (Booleans,
integers, floating-point numbers, strings, etc.) and conceptual (abstract) Level
(arrays, lists, trees, graphs, etc.). Finally the technical level is the application
data (text, graphics, images, audio, video, multimedia) an the Hospital Level
includes narrative (“free text”) patient record data (structured/unstructured
and standardized/non-standardized), -omics data (genomics, proteomics,
metabolomics, lipidomics, transcriptomics, microbiomics, fluxomics, phenomics,
cytomics, connectomics, environomics, exposomics, exonomics, foodomics, topo-
nomics, etc.), numerical measurements (physiological data, lab results, vital
signs, etc.), recorded signals (ECG, EEG, EOG, etc.), Images (standard X-ray,
MR, CT, PET, SPECT, microscopy, confocal laserscans, ultrasound imaging,
molecular imaging, etc.)

Data preprocessing is often a required first step for machine learning because
ML algorithms learn from data and the learning outcome for problem solving
heavily depends on the proper data needed to solve a particular problem. Data
preprocessing, however, inflicts a heavy danger, e.g. during the preprocessing
data can be inadvertently modified, e.g. “interesting” data may be removed.
Consequently, for discovery purposes it would be wise to have a look at the
original raw data first.

Data integration is a hot topic generally and in health informatics specifi-
cally and solutions can bridge the gap between clinical and biomedical research
[39]. This is becoming even more important due to the increasing amounts of
heterogeneous, complex patient related data sets, resulting from various sources
including picture archiving and communication systems (PACS) and radiologi-
cal information systems (RIS), hospital information systems (HIS), laboratory
information systems (LIS), physiological and clinical data repositories, and all
sorts of -omics data from laboratories, using samples from Biobanks. The latter
include large collections of DNA sequence data, proteomic and metabolic data;
resulting from sophisticated high-throughput analytical technologies. Along with
classical patient records, containing large amounts of unstructured and semi-
structured information, integration efforts incorporate enormous problems, but
at the same time offers new possibilities for translational research. However,
before starting any data integration or machine learning task, it is necessary
to get a deep understanding of the underlying physics of the available data. In
this paper we provide an overview about the modern data landscape in a clini-
cal and biomedical research domain, with a focus on typical clinical/biomedical
research, imaging and -omics data-sources, and the structure, quality and size
of the produced patient related health information.

Whilst data integration is on combining data from different sources and pro-
viding users with a unified view on these data (e.g. combining research results
from different bioinformatics repositories), data fusion is matching various data
sets which represent one and the same object into a single, consistent, and clean
representation [40]; in health informatics these unified views are particularly
important in high-dimensions, e.g. for integrating heterogeneous descriptions of
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the same set of genes [41]. The main expectation is that fused data is more
informative than the original inputs.

Capturing all information describing a biological system is the implicit objec-
tive of all -omics methods, however, genomics, transcriptomics, proteomics,
metabolomics, etc. need to be combined to approach this goal: valuable informa-
tion can be obtained using various analytical techniques such as nuclear magnetic
resonance, liquid chromatography, or gas chromatography coupled to mass spec-
trometry. Each method has inherent advantages and disadvantages, but are com-
plementary in terms of biological information, consequently combining multiple
data sets, provided by different analytical platforms is of utmost importance.
For each platform, the relevant information is extracted in the first step. The
obtained latent variables are then fused and further analyzed. The influence of
the original variables is then calculated back and interpreted. There is plenty of
open future research to include all possible sources of information [42].

3.2 Research Track 2 ML: Machine Learning Algorithms

There are uncountable future challenges in the design, development, experimen-
tation and evaluation of ML algorithms generally and in the application to health
informatics specifically. The ultimate goal ever since is to develop algorithms
which can automatically learn from data, hence can improve with experience
over time without any human-in-the-loop. Most colleagues from the ML commu-
nity are concentrating on automatic Machine Learning (aML), with the grand
goal of excluding humans, hence to make it fully automatic and best practice
real-world examples can be found in speech processing [43], recommender sys-
tems [44], or autonomous vehicles [45], just to mention a few.

However, the application of such aML approaches in the complex health
domain seems elusive in the near future and a good example are Gaussian
processes, where aML approaches (e.g. standard kernel machines) struggle on
function extrapolation problems which are trivial for human learners. Conse-
quently, interactive ML-approaches, by integrating a human-into-the-loop (e.g.
a human kernel [46]), thereby making use of human cognitive abilities, is a
promising approach for solving problems in the complex health domain. iML
can be defined as algorithms that can interact with both computational agents
and human agents and can optimize their learning behaviour through these
interactions [22]. In Active Learning such agents are referred to as oracles [47].

iML-approaches can be of particular interest to solve problems, where we are
lacking big data sets, deal with complex data and/or rare events, where tradi-
tional learning algorithms suffer due to insufficient training samples. Here the
doctor-in-the-loop can help, where human expertise and long-term experience
can assist in solving problems which otherwise would remain NP-hard; exam-
ples include subspace clustering [48], protein folding [49], or privacy preserving
ML, which is an important issue, fostered by anonymization, in which a record is
released only if it is indistinguishable from k other entities in the data, but where
k-anonymity is highly dependent on spatial locality in order to effectively imple-
ment the technique in a statistically robust way. In high dimensionalities data
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becomes sparse, hence the concept of spatial locality is not easy to define. Con-
sequently, it becomes difficult to anonymize the data without an unacceptably
high amount of information loss [50] - here iML could be of help.

Despite these apparent findings, so far there is little quantitative evidence
on effectiveness and efficiency of iML-algorithms. Moreover, there is practically
no evidence, how such interaction may really optimize such algorithms. Even
though such “natural” intelligent agents are present in large numbers on our
world and are studied by cognitive scientists for quite a while [51]. One possible
explanation for the dominance of aML-approaches could be, that these are much
better to evaluate and therefore are more rapidly publishable. In iML approaches
methodically correct evaluations are not only much more difficult and time-
consuming, but also very difficult or even impossible to replicate, due to the fact
that human agents are subjective, individual and therefore can not be copied -
in contrast to data, algorithms and computational agents. Robustness of iML is
an open question.

3.3 Research Track 3 GDM Graph-Based Data Mining

Graph-Theory [52] provides powerful tools to map data structures and to find
novel connections between single data objects [53,54]. The inferred graphs can
be further analyzed by using graph-theoretical, statistical and machine learning
techniques [55]. A mapping of already existing and in medical practice approved
knowledge spaces as a conceptual graph (as e.g. demonstrated in [56]) and a sub-
sequent visual and graph-theoretical analysis can bring novel insights on hidden
patterns in the data, which exactly is the goal of knowledge discovery. Another
benefit of a graph-based data structure is in the applicability of methods from
network topology and network analysis and data mining, e.g. small-world phe-
nomenon [57,58], and cluster analysis [59,60]. However, the first question is “How
to get a graph?”, or simpler “How to get point sets?”, because point cloud data
sets (PCD) are used as primitives for such approaches. The answer to this ques-
tion is not trivial (see [61]), apart from “naturally available” point clouds, e.g.
from laser scanners, protein structures [62], or text mapped into a set of points
(vectors) in R

n. Sticking on the last example, graphs are intuitively more infor-
mative as example words/phrase representations [63], and graphs are the best
studied data structures in computer science, with a strong relation to logical
languages [64]. The beginning of graph-based data mining approaches was two
decades ago, some pioneering work include [65–67]. According to [64] there are
five theoretical bases of graph-based data mining approaches such as (1) sub-
graph categories, (2) subgraph isomorphism, (3) graph invariants, (4) mining
measures and (5) solution methods. Furthermore, there are five groups of differ-
ent graph-theoretical approaches for data mining such as (1) greedy search based
approach, (2) inductive logic programming based approach, (3) inductive data-
base based approach, (4) mathematical graph theory based approach and (5)
kernel function based approach [68]. However, the main disadvantage of graph-
theoretical text mining is the computational complexity of the graph represen-
tation, consequently the goal of future research in the field of graph-theoretical
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approaches for text mining is to develop efficient graph mining algorithms which
implement effective search strategies and data structures [63].

In [69] a graph-theoretical approach for text mining is used to extract relation
information between terms in “free-text” electronic health care records that are
semantically or syntactically related. Another field of application is the text
analysis of web and social media for detecting influenza-like illnesses [70].

Moreover there can be content-rich relationship networks among biological
concepts, genes, proteins and drugs developed with topological text data mining
like shown in [71]. According to [72] network medicine describes the clinical
application field of topological text mining due to addressing the complexity of
human diseases with molecular and phenotypic network maps.

3.4 Research Track 4 TDM Topological Data Mining

Closely related to graph-based methods are topological data mining methods;
for both we need point cloud data sets - or at least distances - as input. A
set of such primitives forms a space, and if we have finite sets equipped with
proximity or similarity measure functions simq : Sq+1 → [0, 1], which measure
how “close” or “similar” (q + 1)-tuples of elements of S are, we speak about a
topological space. A value of 0 means totally different objects, while 1 corresponds
to equivalent items. Interesting are manifolds, which can be seen as a topological
space, which is locally homeomorphic (that means it has a continuous function
with an inverse function) to a real n-dimensional space. In other words: X is a
d -manifold if every point of X has a neighborhood homeomorphic to B

d; with
boundary if every point has a neighborhood homeomorphic to B or B

d
+ [73].

A topological space may be viewed as an abstraction of a metric space,
and similarly, manifolds generalize the connectivity of d-dimensional Euclidean
spaces B

d by being locally similar, but globally different. A d-dimensional chart
at p ∈ X is a homeomorphism φ : U → R

d onto an open subset of Rd, where
U is a neighborhood of p and open is defined using the metric. A d-dimensional
manifold (d-manifold) is a topological space X with a d-dimensional chart at
every point x ∈ X [74].

For us also interesting are simplicial complexes (“simplicials”) which are
spaces described in a very particular way, the basis is in Homology. The rea-
son is that it is not possible to represent surfaces precisely in a computer system
due to limited computational storage; thus, surfaces are sampled and represented
with triangulations. Such a triangulation is called a simplicial complex, and is a
combinatorial space that can represent a space. With such simplicial complexes,
the topology of a space from its geometry can be separated. Zomorodian [74]
compares it with the separation of syntax and semantics in logic.

The two most popular techniques are homology and persistence. The con-
nectivity of a space is determined by its cycles of different dimensions. These
cycles are organized into groups, called homology groups. Given a reasonably
explicit description of a space, the homology groups can be computed with lin-
ear algebra. Homology groups have a relatively strong discriminative power and
a clear meaning, while having low computational cost. In the study of persistent
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homology the invariants are in the form of persistence diagrams or barcodes [75].
For us it is important to extract significant features, and thus these methods are
useful, since they provide robust and general feature definitions with emphasis
on global information, e.g. Alpha Shapes [76]. A recent example for topologi-
cal data mining is given by [77]: Topological text mining, which builds on the
well-known vector space model, which is a standard approach in text mining
[78]: a collection of text documents (corpus) is mapped into points (=vectors) in
R

n. Moreover, each word can be mapped into so-called term vectors, resulting
in a very high dimensional vector space. If there are n words extracted from
all the documents then each document is mapped to a point (term vector) in
R

n with coordinates corresponding to the weights. This way the whole corpus
can be transformed into a point cloud data set. Instead of the Euclidean metric
the use of a similarity (proximity) measure is sometimes more convenient; the
cosine similarity measure is a typical example: the cosine of the angle between
two vectors (points in the cloud) reflects how “similar” the underlying weighted
combinations of keywords are. Amongst the many different text mining methods
(for a recent overview refer to [79]); topological approaches are promising, but
need a lot of further research. One of the main tasks of applied topology is to
find and analyse higher dimensional topological structures in lower dimensional
spaces (e.g. point cloud from vector space model as discussed in [80]). A com-
mon way to describe topological spaces is to first create simplicial complexes,
because a simplicial complex structure on a topological space is an expression of
the space as a union of simplices such as points, intervals, triangles, and higher
dimensional analogues. Simplicial complexes provide an easy combinatorial way
to define certain topological spaces [81]. A simplical complex K is defined as a
finite collection of simplices such that σ ∈ K and τ , which is a face of σ, implies
τ ∈ K, and σ, σ′ ∈ K implies σ∩σ′ can either be a face of both σ and σ′ or empty
[82]. One way to create a simplical complex is to examine all subsets of points,
and if any subsets of points are close enough, a p-simplex (e.g. line) is added to
the complex with those points as vertices. For instance, a Vietoris-Rips complex
of diameter ε is defined as V R(ε) = σ|diam(σ) ≤ ε, where diam(ε) is defined as
the largest distance between two points in σ [82]. A common way a analyse the
topological structure is to use persistent homology, which identifies cluster, holes
and voids therein. It is assumed that more robust topological structures are the
one which persist with increasing ε. For detailed information about persistent
homology, see [82–84].

3.5 Research Track 5 EDM Entropy-Based Data Mining

Information Entropy can be used as a measure of uncertainty in data. To date,
there have emerged many different types of entropy methods with a large num-
ber of different purposes and applications; here we mention only a few: Graph
Entropy was described by [85] to measure structural information content of
graphs, and a different definition, more focused on problems in information and
coding theory, was introduced by Körner in [86]. Graph entropy is often used for
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the characterization of the structure of graph-based systems, e.g. in mathemati-
cal biochemistry, but also for any complex network [87]. In these applications the
entropy of a graph is interpreted as its structural information content and serves
as a complexity measure, and such a measure is associated with an equivalence
relation defined on a finite graph; by application of Shannons Eq. 2.4 in [88] with
the probability distribution we get a numerical value that serves as an index of
the structural feature captured by the equivalence relation.

Topological Entropy (TopEn), was introduced by [89] with the purpose to
introduce the notion of entropy as an invariant for continuous mappings: Let
(X,T ) be a topological dynamical system, i.e., let X be a nonempty compact
Hausdorff space and T : X → X a continuous map; the TopEn is a nonnegative
number which measures the complexity of the system [90].

Hornero et al. [91] performed a complexity analysis of intracranial pressure
dynamics during periods of severe intracranial hypertension. For that purpose
they analyzed eleven episodes of intracranial hypertension from seven patients.
They measured the changes in the intracranial pressure complexity by applying
ApEn, as patients progressed from a state of normal intracranial pressure to
intracranial hypertension, and found that a decreased complexity of intracranial
pressure coincides with periods of intracranial hypertension in brain injury. Their
approach is of particular interest to us, because they proposed classification
based on ApEn tendencies instead of absolute values.

Pincus et al. took in [92] heart rate recordings of 45 healthy infants with
recordings of an infant one week after an aborted sudden infant death syndrom
(SIDS) episode. They then calculated the ApEn of these recordings and found
a significant smaller value for the aborted SIDS infant compared to the healthy
ones.

3.6 Research Track 6 DAV Data Visualization

Visualization is a very important method of transforming the symbolic into the
geometric, offers opportunities for discovering knowledge in data and fosters
insight into data [26]. There are endless examples for the importance of visual-
ization in health, e.g. Otasek et al. [12] present a work on Visual Data Mining
(VDM), which is supported by interactive and scalable network visualization and
analysis. Otasek et al. emphasize that knowledge discovery within complex data
sets involves many workflows, including accurately representing many formats
of source data, merging heterogeneous and distributed data sources, complex
database searching, integrating results from multiple computational and mathe-
matical analyses, and effectively visualizing properties and results. Mueller et al.
[93] demonstrate the successful application of data Glyphs in a disease analyser
for the analysis of big medical data sets with automatic validation of the data
mapping, selection of subgroups within histograms and a visual comparison of
the value distributions. A good example for the catenation of visualization with
ML is clustering: Clustering is a descriptive task to identify homogeneous groups
of data objects based on the dimensions (i.e. values of the attributes). Clustering
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methods are often subject to other systems, for example to reduce the possibil-
ities of recommender systems (e.g. Tag-recommender on Youtube videos [94]);
for example clustering of large high-dimensional gene expression data sets has
widespread application in -omics [95]. Unfortunately, the underlying structure
of these natural data sets is often fuzzy, and the computational identification of
data clusters generally requires (human) expert knowledge about cluster num-
ber and geometry. The high-dimensionality of data is a huge problem in health
informatics general and in ML in particular, and the curse of dimensionality is
a critical factor for clustering: With increasing dimensionality the volume of the
space increases so fast that the available data becomes sparse, hence it becomes
impossible to find reliable clusters; also the concept of distance becomes less
precise as the number of dimensions grows, since the distance between any two
points in a given data set converges; moreover, different clusters might be found
in different sub spaces, so a global filtering of attributes is also not sufficient.
Given that large number of attributes, it is likely that some attributes are cor-
related, therefore clusters might exist in arbitrarily oriented affinity sub spaces.
Moreover, high-dimensional data likely includes irrelevant features, which may
obscure to find the relevant ones, thus increases the danger of modeling artifacts.
The problem is that we are confronted with subjective similarity functions; the
most simplest example is the grouping of cars in a showroom: a technician will
most likely group the cars differently than a mother of three kids (cylinder capac-
ity versus storage capacity). This subspace clustering problem is hard, because
for the grouping very different characteristics can be used: highly subjective
and context specific. What is recognized as comfort for end-users of individual
systems, can be applied in scientific research for the interactive exploration of
high-dimensional data sets [96]. Consequently, iML-approaches can be beneficial
to support finding solutions in hard biomedical problems [48]. Actually, humans
are quite good in comparison for the determination of similarities and dissimilar-
ities - described by nonlinear multidimensional scaling (MDS) models [97]. MDS
models represent similarity relations between entities as a geometric model that
consists of a set of points within a metric space. The output of an MDS routine
is a geometric model of the data, with each object of the data set represented as
a point in n-dimensional space.

3.7 Research Track 7 DAP Privacy

Privacy aware machine learning and privacy preserving machine learning
is an important issue [98,99], fostered by anonymization concepts, in which a
record is released only if it is indistinguishable from k other entities in the data.
k-anonymity is highly dependent on spatial locality in order to effectively imple-
ment the technique in a statistically robust way and in high dimensions data
becomes sparse, hence the concept of spatial locality is not easy to define. Conse-
quently, it becomes difficult to anonymize the data without an unacceptably high
amount of information loss [50]. Consequently, the problem of k-Anonymization
is on the one hand NP-hard, on the other hand the quality of the result obtained
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can be measured at the given factors (k-Anonymity, l-diversity, t-closeness, delta-
presence), but not with regard to the actual security of the data, i.e. the re-
identification through an attacker. For this purpose certain assumptions about
the background knowledge of the hypothetical enemy must be made. With regard
to the particular demographic and cultural clinical environment this is best done
by a human agent. Thus, the problem of (k-)Anonymization represents a natural
application domain for iML.

4 Example Curriculum

Most universities offer excellent courses on machine learning, neural networks,
data mining, and visualization, so a course on ML for HI should be complemen-
tary and follow a research-based teaching (RBT) style, showing the students
state-of-the-art science and engineering example from biomedicine and the life
sciences for discussing the underlying concepts, theories, paradigms, models,
methods and tools on practical cases and examples (Fig. 2). For practical rea-
sons the exercises can be done with Python [100], which is to date still the

Fig. 2. The top level view of the contents of the Machine Learning for Health Infor-
matics course at Vienna University of Technology, developed by A. Holzinger. Besides
from focusing on practical examples from biology, biomedicine, clinical medicine and
healthcare, issues including privacy, safety, security, data protection, validation, eval-
uation, social and economic impact, acceptance and trust are important parts of this
course
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most used ML-tool worldwide, and probabilistic programming [101] should be
fostered (with at least a short touch on, e.g., Anglican, Church, or PyMC).
The course 183.A83 at Vienna University of Technology (http://hci-kdd.org/
machine-learning-for-health-informatics-course/) is consisting of twelve lectures
plus practicals for a one-semester course on Master level with the following
contents:

Lecture 01: Introduction and Overview of ML and HI explains the HCI-KDD
approach, shows the complexity of the application area health informatics,
demonstrates what aML can do and shows the limitations of aML, and the
usefulness iML with a human-in-the-loop on practical examples and outlines
some future challenges.

Lecture 02: Fundamentals of Data and Information discusses the underlying
physics of data and biomedical data sources, taxonomy of data, data struc-
tures, data integration, data fusion, and a clinical view on data, information
and knowledge; focuses then on probabilistic information, information theory,
cross-entropy, mutual information and Kullback-Leibler Divergence.

Lecture 03: Dimensionality Reduction and Subspace Clustering provides an intro-
duction into classification vs. clustering, feature spaces, feature engineering, dis-
cusses the curse of dimensionality and methods of dimensionality reduction, and
demonstrates the usefulness of subspace clustering with the expert-in-the-loop;
finally discusses the hard question “what is interesting?” by showing projection
pursuit.

Lecture 04: Human Learning vs. Machine Learning: Decision Making starts with
reinforcement learning and discusses the differences of humans and machines
on the example of decision making under uncertainty, shows then multi-armed
bandits and applications in health and finally gives an outlook on the importance
of transfer learning.

Lecture 05: Probabilistic Graphical Models I starts with reasoning under uncer-
tainty and expected utility theory, highlights the importance of graphs and
knowledge representation in network medicine, shows some basic metrics and
measures and discusses practical examples of graphical model learning and how
to get graphs.

Lecture 06: Probabilistic Graphical Models II continues with graphical models
and decision making, shows factor graphs, graph isomorphism and applications,
Bayes nets, ML on graphs, similarity and correspondence, and probabilistic topic
models for natural language to get insight into unknown document collections,
concluded by Graph bandits.

Lecture 07: Evolutionary Computing for HI I poses medical decision making as
search problem and shows evolutionary principles (Lamarck, Darwin, Baldwin,
Mendel) and applications of evolutionary computing with the special case of
genetic algorithms and k-armed bandits and genetic algorithms (global opti-
mization problem).

http://hci-kdd.org/machine-learning-for-health-informatics-course/
http://hci-kdd.org/machine-learning-for-health-informatics-course/
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Lecture 08: Evolutionary Computing for HI II continues with examples from
medical applications for EA, discusses natural computing concepts and their
usefulness in principle, focuses then on Ant Colony Optimization and the travel-
ing salesman problem with motivation on protein folding, simulated annealing,
and the human-in-the-loop, and finalizes with multi-agents and neuro evolution.

Lecture 09: Towards Open Data Sets: Privacy Aware Machine Learning moti-
vates privacy, data protection safety and security and discusses anonymization
methods (k-Anonymization, l-diversity, t-closeness, delta-presence, pertubative
approaches, differentially private kernel learning, etc.), and how iML can help
anonymization.

Lecture 10: Active Learning, Multi-Task Learning and Transfer Learning dis-
cusses the principles of active learning, preference learning, active preference
learning with an excursion on PAC-learning, and programming by feedback,
highlights some problems of the human-in-the-loop and continues with MTL
and TL, where humans are still better than machines.

Lecture 11: Machine Learning from Text focuses on natural language under-
standing and the problems involved, and highlights word vectors for sentiment
analysis (continous bag-of-words model, skip-gram model, global vectors for word
embedding) with giving an outline on neural probabilistic language models and
alternative models.

Lecture 12: Discrete Multi-Agent Systems on the topic of stochastic simulation
of tumor kinetics and key problems for cancer research, tumor growth modeling,
cellular potts model, tumor growth visualization and towards using open tumor
growth data for machine learning in the international context [102].

5 Future Challenges

Much future research has to be done, particularly in the fields of Multi-Task
Learning and Transfer Learning to go towards Multi-Agent-Hybrid Systems as
applications of the iML-approach.

5.1 Future Challenge 1: Multi-task Learning

Multi-task learning (MTL) aims to improve the prediction performance by
learning a problem together with multiple, different but related other problems
through shared parameters or a shared representation. The underlying principle
is bias learning based on probable approximately correct learning (PAC learning)
[103]. To find such a bias is still the hardest problem in any ML task and essen-
tial for the initial choice of an appropriate hypothesis space, which must be large
enough to contain a solution, and small enough to ensure a good generalization
from a small number of data sets. Existing methods of bias generally require the
input of a human-expert-in-the-loop in the form of heuristics and domain knowl-
edge to ensure the selection of an appropriate set of features, as such features
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are key to learning and understanding. However, such methods are limited by
the accuracy and reliability of the expert s knowledge (robustness of the human)
and also by the extent to which that knowledge can be transferred to new tasks
(see next subsection). Baxter (2000) [104] introduced a model of bias learning
which builds on the PAC learning model which concludes that learning multiple
related tasks reduces the sampling burden required for good generalization and
bias that is learnt on sufficiently many training tasks is likely to be good for
learning novel tasks drawn from the same environment (the problem of transfer
learning to new environments is discussed in the next subsection). A practical
example is regularized MTL [105], which is based on the minimization of reg-
ularization functionals similar to Support Vector Machines (SVMs), that have
been successfully used in the past for singletask learning. The regularized MTL
approach allows to model the relation between tasks in terms of a novel kernel
function that uses a taskcoupling parameter and largely outperforms singletask
learning using SVMs. However, multi-task SVMs are inherently restricted by the
fact that SVMs require each class to be addressed explicitly with its own weight
vector. In a multi-task setting this requires the different learning tasks to share
the same set of classes. An alternative formulation for MTL is an extension of
the large margin nearest neighbor algorithm (LMNN) [106]. Instead of relying
on separating hyper-planes, its decision function is based on the nearest neigh-
bor rule which inherently extends to many classes and becomes a natural fit
for MTL. This approach outperforms state-of-the-art MTL classifiers, however,
much open research challenges remain open in this area [107].

5.2 Future Challenge 2: Transfer Learning

A huge problem in ML is the phenomenon of catastrophic forgetting, i.e. when
learned one task and transferred to another task the ML algorithm “forgets”
how to perform the learned task. This is a well-known problem which affects ML-
systems and was first described in the context of connectionist networks [108];
whereas natural cognitive systems rarely completely disrupt or erase previously
learned information, i.e. natural cognitive systems do not forget “catastrophi-
cally” [109]. Consequently the challenge is to discover how to avoid the problem
of catastrophic forgetting, which is a current hot topic [110].

According to Pan & Yang (2010) [111] a major assumption in many ML
algorithms is, that both the training data and future (unknown) data must be
in the same feature space and required to have the same distribution. In many
real-world applications, particularly in the health domain, this is not the case:
Sometimes we have a classification task in one domain of interest, but we only
have sufficient training data in another domain of interest, where the latter data
may be in a completely different feature space or follows a different data distrib-
ution. In such cases transfer learning would greatly improve the performance of
learning by avoiding much expensive data-labeling efforts, however, much open
questions remain for future research [112].
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5.3 Future Challenge 3: Multi-agent-Hybrid Systems

Multi-Agent-Systems (MAS) are collections of many agents interacting with each
other. They can either share a common goal (for example an ant colony, bird
flock, or fish swarm etc.), or they can pursue their own interests (for exam-
ple as in an open-market economy). MAS can be traditionally characterized by
the facts that (a) each agent has incomplete information and/or capabilities
for solving a problem, (b) agents are autonomous, so there is no global system
control; (c) data is decentralized; and (d) computation is asynchronous [113].
For the health domain of particular interest is the consensus problem, which
formed the foundation for distributed computing [114]. The roots are in the
study of (human) experts in group consensus problems: Consider a group of
humans who must act together as a team and each individual has a subjec-
tive probability distribution for the unknown value of some parameter; a model
which describes how the group reaches agreement by pooling their individual
opinions was described by DeGroot (1974) [115] and was used decades later for
the aggregation of information with uncertainty obtained from multiple sensors
[116] and medical experts [117]. On this basis Olfati-Saber et al. (2007) [118] pre-
sented a theoretical framework for analysis of consensus algorithms for networked
multi-agent systems with fixed or dynamic topology and directed information
flow. In complex real-world problems, e.g., for the epidemiological and ecological
analysis of infectious diseases, standard models based on differential equations
very rapidly become unmanageable due to too many parameters, and here MAS
can also be very helpful [119]. Moreover, collaborative multi-agent reinforcement
learning has a lot of research potential for machine learning [120].

6 Conclusion

There are uncountable future challenges in ML generally and in the application of
ML to health informatics specifically. The ultimate goal is to design and develop
algorithms which can automatically learn from data, hence can improve with
experience over time without any human-in-the-loop. However, the application
of such aML approaches in the complex health domain seems elusive in the near
future and a good example are Gaussian processes, where aML approaches (e.g.
standard kernel machines) struggle on function extrapolation problems which
are trivial for human learners. Consequently, iML-approaches, by integrating a
human-into-the-loop (e.g. a human kernel [46]), thereby making use of human
cognitive abilities, seems to be a promising approach. iML-approaches can be
of particular interest to solve problems in HI, where we are lacking big data
sets, deal with complex data and/or rare events, where traditional learning algo-
rithms suffer due to insufficient training samples. Here the doctor-in-the-loopcan
help, where human expertise and long-term experience can assist in solving prob-
lems which otherwise would remain NP-hard. A cross-domain integration and
appraisal of different fields provides an atmosphere to foster different perspec-
tives and opinions and is an ideal think-tank and incubator to foster novel ideas
and a fresh look on different methodologies to put these ideas into Business.
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