7 research outputs found

    The plant traits that drive ecosystems: Evidence from three continents.

    Get PDF
    Question: A set of easily‐measured (‘soft’) plant traits has been identified as potentially useful predictors of ecosystem functioning in previous studies. Here we aimed to discover whether the screening techniques remain operational in widely contrasted circumstances, to test for the existence of axes of variation in the particular sets of traits, and to test for their links with ‘harder’ traits of proven importance to ecosystem functioning. Location: central‐western Argentina, central England, northern upland Iran, and north‐eastern Spain. Recurrent patterns of ecological specialization: Through ordination of a matrix of 640 vascular plant taxa by 12 standardized traits, we detected similar patterns of specialization in the four floras. The first PCA axis was identified as an axis of resource capture, usage and release. PCA axis 2 appeared to be a size‐related axis. Individual PCA for each country showed that the same traits remained valuable as predictors of resource capture and utilization in all of them, despite their major differences in climate, biogeography and land‐use. The results were not significantly driven by particular taxa: the main traits determining PCA axis 1 were very similar in eudicotyledons and monocotyledons and Asteraceae, Fabaceae and Poaceae. Links between recurrent suites of ‘soft’ traits and ‘hard’ traits: The validity of PCA axis 1 as a key predictor of resource capture and utilization was tested by comparisons between this axis and values of more rigorously established predictors (‘hard’ traits) for the floras of Argentina and England. PCA axis 1 was correlated with variation in relative growth rate, leaf nitrogen content, and litter decomposition rate. It also coincided with palatability to model generalist herbivores. Therefore, location on PCA axis 1 can be linked to major ecosystem processes in those habitats where the plants are dominant. Conclusion: We confirm the existence at the global scale of a major axis of evolutionary specialization, previously recognised in several local floras. This axis reflects a fundamental trade‐off between rapid acquisition of resources and conservation of resources within well‐protected tissues. These major trends of specialization were maintained across different environmental situations (including differences in the proximate causes of low productivity, i.e. drought or mineral nutrient deficiency). The trends were also consistent across floras and major phylogenetic groups, and were linked with traits directly relevant to ecosystem processes.Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Hodgson, J.G.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Thompson, K.. The University. Department of Animal and Plant Sciences. Unit of Comparative Plant Ecology; Reino UnidoFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cornelissen, Johannes H. C.. Free University. Faculty Earth and Life Sciences. Department of Systems Ecology; Países BajosFil: Funes, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Pérez Harguindeguy, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Vendramini, Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Falczuk, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Zak, Marcelo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Khoshnevi, M.. Research Institute of Forests and Rangelands; IránFil: Pérez Rontomé, M. C.. Instituto Pirenaico de Ecología; EspañaFil: Shirvani, F. A.. Research Institute of Forests and Rangelands; IránFil: Yazdani, S.. Research Institute of Forests and Rangelands; IránFil: Abbas Azimi, R. Research Institute of Forests and Rangelands; IránFil: Bogaard, A. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Boustani, S.. Research Institute of Forests and Rangelands; IránFil: Charles, M.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Dehghan, M.. Research Institute of Forests and Rangelands; IránFil: de Torres Espuny, L.. Instituto Pirenaico de Ecología; EspañaFil: Guerrero Campo, J.. Instituto Pirenaico de Ecología; EspañaFil: Hynd, A.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Jones, G.. The University. Department of Archaeology and Prehistory; Reino UnidoFil: Kowsary, E.. Research Institute of Forests and Rangelands; Irán. Instituto Pirenaico de Ecología; EspañaFil: Kazemi Saeed, F.. Research Institute of Forests and Rangelands; IránFil: Maestro Martínez, M.. Instituto Pirenaico de Ecología; EspañaFil: Romo Diez, A.. Instituto Botanico de Barcelona; EspañaFil: Shaw, S.. Research Institute of Forests and Rangelands; Irán. The University. Department of Animal and Plant Sciences; Reino UnidoFil: Siavash, B.. Research Institute of Forests and Rangelands; IránFil: Villar Salvador, P.. Instituto Pirenaico de Ecología; Españ

    Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?

    Get PDF
    12 páginas, 5 figuras, 2 tablas.-- et al.[Background and Aims]: Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of ‘this ecological circumstance’ is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this ‘missing link’: the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. [Methods]: Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. [Key Results]: Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. [Conclusions]: Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.A considerable quantity of the data used in this project was collected during projects funded by respectively NERC (UK), the Research Institute of Forests and Rangelands (RIFR, Iran), Universidad Nacional de Córdoba, Comisión Interministerial de Ciencia y Tecnología (Spain) and the Darwin Initiative for the Survival of Species (DEFRA, UK).Peer reviewe

    Stomatal vs. genome size in angiosperms

    Get PDF
    12 páginas, 5 figuras, 2 tablas.-- et al.[Background and Aims]: Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of ‘this ecological circumstance’ is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this ‘missing link’: the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. [Methods]: Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. [Key Results]: Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. [Conclusions]: Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.A considerable quantity of the data used in this project was collected during projects funded by respectively NERC (UK), the Research Institute of Forests and Rangelands (RIFR, Iran), Universidad Nacional de Córdoba, Comisión Interministerial de Ciencia y Tecnología (Spain) and the Darwin Initiative for the Survival of Species (DEFRA, UK).Peer reviewe
    corecore