37 research outputs found

    The response of grounding electrodes to lightning currents

    No full text
    Lightning is a frequent cause of failures and damages in power systems. In most situations, the severity of lightning effects is influenced by the response of the system grounding electrodes to lightning currents that is typically quite different from that presented to currents at power-system frequencies

    Frequency of Panton-Valentine Leukocidin-Producing Methicillin-Sensitive Staphylococcus Strains in Patients with Complicated Skin and Soft Tissue Infection in Bronx, New York ▿

    No full text
    lukF-PV was present in 36% of skin and soft tissue infection (SSTI)-derived methicillin-susceptible Staphylococcus aureus (MSSA) strains and comprised six distinct clones, which contained fewer enterotoxin genes than strains without lukF-PV. Clinical presentations and outcomes of lukF-PV+ methicillin-resistant S. aureus (MRSA) and MSSA SSTIs were comparable. In multivariable analysis, the presence of lukF-PV remained a significant predictor for incision and drainage among MSSA strains

    Targeting Pan-Resistant Bacteria With Antibodies to a Broadly Conserved Surface Polysaccharide Expressed During Infection

    Full text link
    BACKGROUND: New therapeutic targets for antibiotic-resistant bacterial pathogens are desperately needed. The bacterial surface polysaccharide poly-β-(1-6)-N-acetyl-glucosamine (PNAG) mediates biofilm formation by some bacterial species, and antibodies to PNAG can confer protective immunity. By analyzing sequenced genomes, we found that potentially multidrug-resistant bacterial species such as Klebsiella pneumoniae, Enterobacter cloacae, Stenotrophomonas maltophilia, and the Burkholderia cepacia complex (BCC) may be able to produce PNAG. Among patients with cystic fibrosis patients, highly antibiotic-resistant bacteria in the BCC have emerged as problematic pathogens, providing an impetus to study the potential of PNAG to be targeted for immunotherapy against pan-resistant bacterial pathogens. METHODS: The presence of PNAG on BCC was assessed using a combination of bacterial genetics, microscopy, and immunochemical approaches. Antibodies to PNAG were tested using opsonophagocytic assays and for protective efficacy against lethal peritonitis in mice. RESULTS: PNAG is expressed in vitro and in vivo by the BCC, and cystic fibrosis patients infected by the BCC species B. dolosa mounted a PNAG-specific opsonophagocytic antibody response. Antisera to PNAG mediated opsonophagocytic killing of BCC and were protective against lethal BCC peritonitis even during coinfection with methicillin-resistant Staphylococcus aureus. CONCLUSIONS: Our findings raise potential new therapeutic options against PNAG-producing bacteria, including even pan-resistant pathogens
    corecore