197 research outputs found

    Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent systems

    Full text link
    Traditionally, superconductors are categorized as type-I or type-II. Type-I superconductors support only Meissner and normal states, while type-II superconductors form magnetic vortices in sufficiently strong applied magnetic fields. Recently there has been much interest in superconducting systems with several species of condensates, in fields ranging from Condensed Matter to High Energy Physics. Here we show that the type-I/type-II classification is insufficient for such multicomponent superconductors. We obtain solutions representing thermodynamically stable vortices with properties falling outside the usual type-I/type-II dichotomy, in that they have the following features: (i) Pippard electrodynamics, (ii) interaction potential with long-range attractive and short-range repulsive parts, (iii) for an n-quantum vortex, a non-monotonic ratio E(n)/n where E(n) is the energy per unit length, (iv) energetic preference for non-axisymmetric vortex states, "vortex molecules". Consequently, these superconductors exhibit an emerging first order transition into a "semi-Meissner" state, an inhomogeneous state comprising a mixture of domains of two-component Meissner state and vortex clusters.Comment: in print in Phys. Rev. B Rapid Communications. v2: presentation is made more accessible for a general reader. Latest updates and links to related papers are available at the home page of one of the authors: http://people.ccmr.cornell.edu/~egor

    Renormalization algorithm with graph enhancement

    Get PDF
    We introduce a class of variational states to describe quantum many-body systems. This class generalizes matrix product states which underly the density-matrix renormalization group approach by combining them with weighted graph states. States within this class may (i) possess arbitrarily long-ranged two-point correlations, (ii) exhibit an arbitrary degree of block entanglement entropy up to a volume law, (iii) may be taken translationally invariant, while at the same time (iv) local properties and two-point correlations can be computed efficiently. This new variational class of states can be thought of as being prepared from matrix product states, followed by commuting unitaries on arbitrary constituents, hence truly generalizing both matrix product and weighted graph states. We use this class of states to formulate a renormalization algorithm with graph enhancement (RAGE) and present numerical examples demonstrating that improvements over density-matrix renormalization group simulations can be achieved in the simulation of ground states and quantum algorithms. Further generalizations, e.g., to higher spatial dimensions, are outlined.Comment: 4 pages, 1 figur

    Pinwheel stabilization by ocular dominance segregation

    Full text link
    We present an analytical approach for studying the coupled development of ocular dominance and orientation preference columns. Using this approach we demonstrate that ocular dominance segregation can induce the stabilization and even the production of pinwheels by their crystallization in two types of periodic lattices. Pinwheel crystallization depends on the overall dominance of one eye over the other, a condition that is fulfilled during early cortical development. Increasing the strength of inter-map coupling induces a transition from pinwheel-free stripe solutions to intermediate and high pinwheel density states.Comment: 10 pages, 4 figure

    Microscopic theory for the light-induced anomalous Hall effect in graphene

    Full text link
    We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties

    Towards experimental quantum-field tomography with ultracold atoms

    Get PDF
    The experimental realization of large-scale many-body systems in atomic- optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one- dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems

    Local renormalization method for random systems

    Full text link
    In this paper, we introduce a real-space renormalization transformation for random spin systems on 2D lattices. The general method is formulated for random systems and results from merging two well known real space renormalization techniques, namely the strong disorder renormalization technique (SDRT) and the contractor renormalization (CORE). We analyze the performance of the method on the 2D random transverse field Ising model (RTFIM).Comment: 12 pages, 13 figures. Submitted to the Special Issue on "Quantum Information and Many-Body Theory", New Journal of Physics. Editors: M.B. Plenio, J. Eiser

    ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity

    Get PDF
    We present a novel voltage-sensitive hemicyanine dye ANNINE-6plus and describe its synthesis, its properties and its voltage-sensitivity in neurons. The dye ANNINE-6plus is a salt with a double positively charged chromophore and two bromide counterions. It is derived from the zwitterionic dye ANNINE-6. While ANNINE-6 is insoluble in water, ANNINE-6plus exhibits a high solubility of around 1 mM. Nonetheless, it displays a strong binding to lipid membranes. In contrast to ANNINE-6, the novel dye can be used to stain cells from aqueous solution without surfactants or organic solvents. In neuronal membranes, ANNINE-6plus exhibits the same molecular Stark effect as ANNINE-6. As a consequence, a high voltage-sensitivity is achieved with illumination and detection in the red end of the excitation and emission spectra, respectively. ANNINE-6plus will be particularly useful for sensitive optical recording of neuronal excitation when organic solvents and surfactants must be avoided as with intracellular or extracellular staining of brain tissue
    corecore