109 research outputs found

    Open problems in nuclear density functional theory

    Full text link
    This note describes five subjects of some interest for the density functional theory in nuclear physics. These are, respectively, i) the need for concave functionals, ii) the nature of the Kohn-Sham potential for the radial density theory, iii) a proper implementation of a density functional for an "intrinsic" rotational density, iv) the possible existence of a potential driving the square root of the density, and v) the existence of many models where a density functional can be explicitly constructed.Comment: 10 page

    Lattice methods and the nuclear few- and many-body problem

    Full text link
    We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.Comment: 20 pages, 3 figures, Submitted to Lect. Notes Phys., "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Nuclear energy density functional from chiral two- and three-nucleon interactions

    Full text link
    An improved density-matrix expansion is used to calculate the nuclear energy density functional from chiral two- and three-nucleon interactions. The two-body interaction comprises long-range one- and two-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition we employ the leading order chiral three-nucleon interaction with its parameters cE,cDc_E, c_D and c1,3,4c_{1,3,4} fixed in calculations of nuclear few-body systems. With this input the nuclear energy density functional is derived to first order in the two- and three-nucleon interaction. We find that the strength functions F(ρ)F_\nabla(\rho) and Fso(ρ)F_{so}(\rho) of the surface and spin-orbit terms compare in the relevant density range reasonably with results of phenomenological Skyrme forces. However, an improved description requires (at least) the treatment of the two-body interaction to second order. This observation is in line with the deficiencies in the nuclear matter equation of state Eˉ(ρ)\bar E(\rho) that remain in the Hartree-Fock approximation with low-momentum two- and three-nucleon interactions.Comment: 16 pages, 12 figures, submitted to Eur. Phys. J.

    The effective fine structure constant of freestanding graphene measured in graphite

    Full text link
    Electrons in graphene behave like Dirac fermions, permitting phenomena from high energy physics to be studied in a solid state setting. A key question is whether or not these Fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite, and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding, graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine structure constant, \alpha *(k,\omega), whose value approaches \alpha * ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal \alpha = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.Comment: 28 pages, 10 figures, 2 animation

    Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    Full text link
    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in arXiv:0910.4979 by Gebremariam {\it et al.} to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N2^2LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a cutoff-dependent coupling {\it constant} arising from zero-range contact interactions and a cutoff-independent coupling {\it function} of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A Mathematica notebook containing the novel density-dependent couplings is provided.Comment: 28 pages, 12 figures. Mathematica notebook provided with submission

    Morfología de la mucosa gástrica oxíntica en ratones jóvenes tratados con omeprazol

    Get PDF
    El omeprazol es un potente inhibidor de la bomba de protones usado como antiácido en la práctica diaria. Actúa uniéndose en forma covalente a la enzima de membrana H+/K+ ATPasa en la etapa final de la estimulación secretora. En pacientes adultos y pediátricos se describen cambios en la mucosa gástrica con altas dosis en cortos periodos de tiempo.Facultad de Ciencias Médica

    Ab Initio Nuclear Thermodynamics

    Get PDF
    We propose a new Monte Carlo method called the pinhole trace algorithm for ab initio calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first ab initio study of the density and temperature dependence of nuclear clustering

    Artificial graphene as a tunable Dirac material

    Full text link
    Artificial honeycomb lattices offer a tunable platform to study massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods, and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band structure engineering and cooperative effects leads to spectacular manifestations in tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    corecore