329 research outputs found

    A silicate disk in the heart of the Ant

    Full text link
    We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods: We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2 m observations on a scale ranging from 60 to 250 mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes. The MIDI spectrum and the visibilities of Mz 3 exhibit a clear signature of amorphous silicate, in contrast to the signatures of crystalline silicates detected in binary post-AGB systems, suggesting that the disk might be relatively young. We used radiative-transfer Monte Carlo simulations of a passive disk to constrain its geometrical and physical parameters. Its inclination (74 degrees ±\pm 3 degrees) and position angle (5 degrees ±\pm 5 degrees) are in accordance with the values derived from the study of the lobes. The inner radius is 9±\pm 1 AU and the disk is relatively flat. The dust mass stored in the disk, estimated as 1 x 10-5Msun, represents only a small fraction of the dust mass found in the lobes and might be a kind of relic of an essentially polar ejection process

    A Fused Donor−Acceptor System Based on an Extended Tetrathiafulvalene and a Ruthenium Complex of Dipyridoquinoxaline

    Get PDF
    An application of the Horner−Wadsworth−Emmons reaction carried out on a ruthenium compound as the electrophilic precursor is described for the synthesis of fused donor−acceptor system 1 based on an extended tetrathiafulvalene and a ruthenium complex of dipyridoquinoxaline units

    Dual Signaling System with an Extended-Tetrathiafulvalene–Phenanthroline Dyad Acting as an Electrooptical Cation Chemosensor

    Get PDF
    A tetrathiafulvalene donor has been annulated to 2,3-di(1H-2-pyrrolyl)quinoxaline affording a new chemosensor 1, which shows a unique optical selectivity and reactivity for the fluoride ion over other anions in CH2Cl2 leading to a colorimetric response. Electrochemical polymerization of 1 occurred in the presence of fluoride

    A close look into the carbon disk at the core of the planetary nebula CPD-568032

    Get PDF
    We present high spatial resolution observations of the dusty core of the Planetary Nebula with Wolf-Rayet central star CPD-568032. These observations were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode providing a typical 300 mas resolution and in interferometric mode using UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. The visible HST images exhibit a complex multilobal geometry dominated by faint lobes. The farthest structures are located at 7" from the star. The mid-IR environment of CPD-568032 is dominated by a compact source, barely resolved by a single UT telescope in a 8.7 micron filter. The infrared core is almost fully resolved with the three 40-45m projected baselines ranging from -5 to 51 degree but smooth oscillating fringes at low level have been detected in spectrally dispersed visibilities. This clear signal is interpreted in terms of a ring structure which would define the bright inner rim of the equatorial disk. Geometric models allowed us to derive the main geometrical parameters of the disk. For instance, a reasonably good fit is reached with an achromatic and elliptical truncated Gaussian with a radius of 97+/-11 AU, an inclination of 28+/-7 degree and a PA for the major axis at 345+/-7 degree. Furthermore, we performed some radiative transfer modeling aimed at further constraining the geometry and mass content of the disk, by taking into account the MIDI dispersed visibilities, spectra, and the large aperture SED of the source. These models show that the disk is mostly optically thin in the N band and highly flared.Comment: Paper accepted in A&

    Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER

    Full text link
    Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. Sixteen red giants and supergiants have been observed with the VLTI/AMBER facility over a two-years period, at medium spectral resolution (R=1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant temporal variation, except for one target: TX Psc, which shows a variation of 4% using visibility data. For the eight targets previously measured by Long-Baseline Interferometry (LBI) in the same spectral range, the difference between our diameters and the literature values is less than 5%, except for TX Psc, which shows a difference of 11%. For the 8 other targets, the present angular diameters are the first measured from LBI. Angular diameters are then used to determine several fundamental stellar parameters, and to locate these targets in the Hertzsprung-Russell Diagram (HRD). Except for the enigmatic Tc-poor low-mass carbon star W Ori, the location of Tc-rich stars in the HRD matches remarkably well the thermally-pulsating AGB, as it is predicted by the stellar-evolution models. For pulsating stars with periods available, we compute the pulsation constant and locate the stars along the various sequences in the Period -- Luminosity diagram. We confirm the increase in mass along the pulsation sequences, as predicted by the theory, except for W Ori which, despite being less massive, appears to have a longer period than T Cet along the first-overtone sequence.Comment: 15 pages, 9 figures, 6 table

    Mid-infrared interferometry of massive young stellar objects. I. VLTI and Subaru observations of the enigmatic object M8E-IR

    Get PDF
    [abridged] Our knowledge of the inner structure of embedded massive young stellar objects is still quite limited. We attempt here to overcome the spatial resolution limitations of conventional thermal infrared imaging. We employed mid-infrared interferometry using the MIDI instrument on the ESO/VLTI facility to investigate M8E-IR, a well-known massive young stellar object suspected of containing a circumstellar disk. Spectrally dispersed visibilities in the 8-13 micron range were obtained at seven interferometric baselines. We resolve the mid-infrared emission of M8E-IR and find typical sizes of the emission regions of the order of 30 milli-arcseconds (~45 AU). Radiative transfer simulations have been performed to interpret the data. The fitting of the spectral energy distribution, in combination with the measured visibilities, does not provide evidence for an extended circumstellar disk with sizes > 100 AU but requires the presence of an extended envelope. The data are not able to constrain the presence of a small-scale disk in addition to an envelope. In either case, the interferometry measurements indicate the existence of a strongly bloated, relatively cool central object, possibly tracing the recent accretion history of M8E-IR. In addition, we present 24.5 micron images that clearly distinguish between M8E-IR and the neighbouring ultracompact HII region and which show the cometary-shaped infrared morphology of the latter source. Our results show that IR interferometry, combined with radiative transfer modelling, can be a viable tool to reveal crucial structure information on embedded massive young stellar objects and to resolve ambiguities arising from fitting the SED.Comment: 7 pages, 5 figures, accepted for publication in A&A, new version after language editing, one important reference added, conclusions unchange

    The evolution of M 2-9 from 2000 to 2010

    Full text link
    M 2-9, the Butterfly nebula, is an outstanding representative of extreme aspherical flows. It presents unique features such as a pair of high-velocity dusty polar blobs and a mirror-symmetric rotating pattern in the inner lobes. Imaging monitoring of the evolution of the nebula in the past decade is presented. We determine the proper motions of the dusty blobs, which infer a new distance estimate of 1.3+-0.2 kpc, a total nebular size of 0.8 pc, a speed of 147 km/s, and a kinematical age of 2500 yr. The corkscrew geometry of the inner rotating pattern is quantified. Different recombination timescales for different ions explain the observed surface brightness distribution. According to the images taken after 1999, the pattern rotates with a period of 92+-4 yr. On the other hand, the analysis of images taken between 1952 and 1977 measures a faster angular velocity. If the phenomenon were related to orbital motion, this would correspond to a modest orbital eccentricity (e=0.10+-0.05), and a slightly shorter period (86+-5 yr). New features have appeared after 2005 on the west side of the lobes and at the base of the pattern. The geometry and travelling times of the rotating pattern support our previous proposal that the phenomenon is produced by a collimated spray of high velocity particles (jet) from the central source, which excites the walls of the inner cavity of M 2-9, rather than by a ionizing photon beam. The speed of such a jet would be remarkable: between 11000 and 16000 km/s. The rotating-jet scenario may explain the formation and excitation of most of the features observed in the inner nebula, with no need for additional mechanisms, winds, or ionization sources. All properties point to a symbiotic-like interacting binary as the central source of M 2-9.Comment: Accepted for publication on Astronomy and Astrophysics (10 pages, 8 figures

    Numerical and experimental study of an air-soil heat exchanger for cooling habitat in Sahelian zone: case of Ouagadougou

    Full text link
    The use of air-soil heat exchangers for the cooling home has developed considerably in recent years. In this work, we have leaded the numerical study of an air-soil heat exchanger by using a nodal approach. We have also presented our experimental prototype implemented in Ouagadougou. This study has allowed determining the evolution of air temperature along the exchanger and also validating our numerical results with those of the literature and the experiment

    The 2008 outburst in the young stellar system ZCMa: I. Evidence of an enhanced bipolar wind on the AU-scale

    Get PDF
    Accretion is a fundamental process in star formation. Although the time evolution of accretion remains a matter of debate, observations and modelling studies suggest that episodic outbursts of strong accretion may dominate the formation of the protostar. Observing young stellar objects during these elevated accretion states is crucial to understanding the origin of unsteady accretion. ZCMa is a pre-main-sequence binary system composed of an embedded Herbig Be star, undergoing photometric outbursts, and a FU Orionis star. The Herbig Be component recently underwent its largest optical photometric outburst detected so far. We aim to constrain the origin of this outburst by studying the emission region of the HI Brackett gamma line, a powerful tracer of accretion/ejection processes on the AU-scale in young stars. Using the AMBER/VLTI instrument at spectral resolutions of 1500 and 12 000, we performed spatially and spectrally resolved interferometric observations of the hot gas emitting across the Brackett gamma emission line, during and after the outburst. From the visibilities and differential phases, we derive characteristic sizes for the Brackett gamma emission and spectro-astrometric measurements across the line, with respect to the continuum. We find that the line profile, the astrometric signal, and the visibilities are inconsistent with the signature of either a Keplerian disk or infall of matter. They are, instead, evidence of a bipolar wind, maybe partly seen through a disk hole inside the dust sublimation radius. The disappearance of the Brackett gamma emission line after the outburst suggests that the outburst is related to a period of strong mass loss rather than a change of the extinction along the line of sight. Based on these conclusions, we speculate that the origin of the outburst is an event of enhanced mass accretion, similar to those occuring in EX Ors and FU Ors.Comment: Accepted for publication in Astronomy and Astrophysics Letter
    corecore