191 research outputs found

    Universal Power Laws Govern Intermittent Rarity in Communities of Interacting Species

    Get PDF
    The temporal dynamics of many populations involve intermittent rarity, that is, the alternation, over variable periods of time, of phases of extremely low abundance, and short outbreaks. In this paper we show that intermittent rarity can arise in simple community models as a result of competitive interactions within and between species. Intermittently rare species are typified as weak invaders in fluctuating communities. Although the dynamics of intermittent rarity are highly irregular, the distribution of time spent in phases of rarity (`rarity times') involves strong regularity. Specifically, intermittent rarity is governed by a well-defined power law. The scaling exponent (-3/2) is a universal feature of intermittent rarity: it does not depend on species demographic parameters; it is insensitive to environmental stochasticity; and the same exponent is found in very different models of nonstructured populations. The distribution of rarity times implies that the dynamics of rarity have no characteristic timescale. Yet in practice the universal scaling law offers a general form of prediction in which one can calculate the frequency of occurrence of rarity phases of any given duration. Data on marine fish communities support the prediction of a -3/2 power law underlying the dynamics of intermittently rare species. The scale-free dynamics reported here place intermittent rarity in the same class as the critical states of other nonlinear dynamical systems in the physical sciences. At a critical state, general laws govern the systems' dynamics irrespective to the specific details of the interactions between constituents

    Modélisation d'un écosystème lotique pollué par une charge organique : prise en compte de l'hydrodynamique et des mécanismes de transport

    Get PDF
    L'article décrit la partie hydrophysique d'un modèle écologique de simulation des transferts de carbone organique dans un cours d'eau pollué par le rejet d'une porcherie. Cette partie est constituée d'un modèle hydrodynamique inspiré du modèle de Saint-Venant, couplé à un modèle de transport basé sur l'équation classique de convection-diffusion. Ces modèles sont appliqués à un écoulement unidirectionnel, non uniforme et non stationnaire.Les équations de ces deux modèles sont résolues par une méthode aux différences finies utilisant des schémas implicites. L'ajustement des paramètres est réalisé à partir de résultats d'expériences de traçage à la rhodamine.Appliqués au carbone organique dissous de l'Albenche, les modèles montrent l'extrême étalement des nuages dû aux seuls phénomènes physiques. L'une des interprétations possibles de l'écart entre les valeurs expérimentales et les valeurs calculées au niveau de la station aval, peut être l'importance de la consommation du carbone par les biocoenoses benthiques.A simulation model of organic carbon movement was designed for a river polluted by piggery wastes.The physical dynamics of this model, as described in this paper, include a hydrodynamic component inspired by a Saint Venant's model coupled with a transport model based on the classical advection-diffusion equation. The model is applied to unidirectional, non-uniform, unsteady flow conditions.The equations were solved by a finite difference method using implicit schemes. The parameters of the equation were adjusted to fit flow conditions determined with a rhodamine dye tracer.When applied to the dissolved organic carbon transport in the Albenche river, the model showed that the distribution of organic carbon in space and in time was due to physical processes only. The differences in concentration between the observed and the expected values in the downstream station could represent the consumption of benthic biotic organic carbon

    Quantifying the added value of climate information in a spatio-temporal dengue model

    Get PDF
    Dengue is the world’s most important vector-borne viral disease. The dengue mosquito and virus are sensitive to climate variability and change. Temperature, humidity and precipitation influence mosquito biology, abundance and habitat, and the virus replication speed. In this study, we develop a modelling procedure to quantify the added value of including climate information in a dengue model for the 76 provinces of Thailand, from 1982–2013. We first developed a seasonal-spatial model, to account for dependency structures from 1 month to the next and between provinces. We then tested precipitation and temperature variables at varying time lags, using linear and nonlinear functional forms, to determine an optimum combination of time lags to describe dengue relative risk. Model parameters were estimated using integrated nested Laplace approximation. This approach provides a novel opportunity to perform model selection in a Bayesian framework, while accounting for underlying spatial and temporal dependency structures and linear or nonlinear functional forms. We quantified the additional variation explained by interannual climate variations, above that provided by the seasonal-spatial model. Overall, an additional 8 % of the variance in dengue relative risk can be explained by accounting for interannual variations in precipitation and temperature in the previous month. The inclusion of nonlinear functions of climate in the model framework improved the model for 79 % of the provinces. Therefore, climate forecast information could significantly contribute to a national dengue early warning system in Thailand

    Complex temporal climate signals drive the emergence of human water-borne disease

    Get PDF
    Predominantly occurring in developing parts of the world, Buruli ulcer is a severely disabling mycobacterium infection which often leads to extensive necrosis of the skin. While the exact route of transmission remains uncertain, like many tropical diseases, associations with climate have been previously observed and could help identify the causative agent's ecological niche. In this paper, links between changes in rainfall and outbreaks of Buruli ulcer in French Guiana, an ultraperipheral European territory in the northeast of South America, were identified using a combination of statistical tests based on singular spectrum analysis, empirical mode decomposition and cross-wavelet coherence analysis. From this, it was possible to postulate for the first time that outbreaks of Buruli ulcer can be triggered by combinations of rainfall patterns occurring on a long (i.e., several years) and short (i.e., seasonal) temporal scale, in addition to stochastic events driven by the El Nino-Southern Oscillation that may disrupt or interact with these patterns. Long-term forecasting of rainfall trends further suggests the possibility of an upcoming outbreak of Buruli ulcer in French Guiana

    Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal

    Full text link
    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential δ(13)C and δ(15)N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals

    Dengue Dynamics in Binh Thuan Province, Southern Vietnam: Periodicity, Synchronicity and Climate Variability

    Get PDF
    Dengue has become a major international public health problem due to increasing geographic distribution and a transition from epidemic transmission with long inter-epidemic intervals to endemic transmission with seasonal fluctuation. Seasonal and multi-annual cycles in dengue incidence vary over time and space. We performed wavelet analyses on time series of monthly notified dengue cases in Binh Thuan province, southern Vietnam, from January 1994 to June 2009. We observed a continuous annual mode of oscillation with a non-stationary 2–3-year multi-annual cycle. We used phase differences to describe the spatio-temporal patterns which suggest that the seasonal wave of infection was either synchronous with all districts or moving away from Phan Thiet district, while the multi-annual wave of infection was moving towards Phan Thiet district. We also found a strong non-stationary association between ENSO indices and climate variables with dengue incidence. We provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam

    The marine fish food web is globally connected

    Get PDF
    The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish—that is, all possible potential feeding links between co-occurring species—is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.Using a global interaction dataset, the authors quantify the distribution of trophic interactions among marine fish, finding a high degree of geographic connectivity but low spatial modularity.C.A. was supported by a MELS-FQRNT Postdoctoral Fellowship and a Ressources Aquatique Québec (RAQ) fellowship during the conception and writing of this manuscript. T.P., D.G. and D.B.S. acknowledge financial support by the CIEE through their working group programme. M.B.A. is funded through FCT project No. PTDC/AAG-MAA/3764/2014. A.R.C. is funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) PGS-D scholarship. D.G., T.P., M.-J.F., P.A. and S.J.L. are supported by NSERC Discovery Grants. T.P. also acknowledges a FRQNT New Investigator award and a Université de Montréal starting grant. D.B.S. acknowledges support from the Royal Society of New Zealand (via Marsden Fast-Start No. UOC-1101 and a Rutherford Discovery Fellowship)

    Regional-scale climate-variability synchrony of cholera epidemics in West Africa

    Get PDF
    BACKGROUND: The relationship between cholera and climate was explored in Africa, the continent with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria. METHODS: We used wavelet analyses and derived methods because these are useful mathematical tools to provide information on the evolution of the periodic component over time and allow quantification of non-stationary associations between time series. RESULTS: The temporal variability of cholera incidence exhibits an interannual component, and a significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed synchrony across countries, even if transient through time, is also coherent with both the local variability of rainfall and the global climate variability quantified by the Indian Oscillation Index. CONCLUSION: Results of this study suggest that large and regional scale climate variability influence both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations in the Gulf of Guinea, as has been described for two other tropical regions of the world, western South America and Bangladesh
    corecore