454 research outputs found

    Many worlds and modality in the interpretation of quantum mechanics: an algebraic approach

    Get PDF
    Many worlds interpretations (MWI) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MI) which state that quantum mechanics does not provide an account of what `actually is the case', but rather deals with what `might be the case', i.e. with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why --even though both interpretations share the same formal structure-- MI fall pray of Kochen-Specker (KS) type contradictions while MWI escape them.Comment: submitted to the Journal of Mathematical Physic

    Correlations, deviations and expectations: the Extended Principle of the Common Cause

    Get PDF
    The Principle of the Common Cause is usually understood to provide causal explanations for probabilistic correlations obtaining between causally unrelated events. In this study, an extended interpretation of the principle is proposed, according to which common causes should be invoked to explain positive correlations whose values depart from the ones that one would expect to obtain in accordance to her probabilistic expectations. In addition, a probabilistic model for common causes is tailored which satisfies the generalized version of the principle, at the same time including the standard conjunctive-fork model as a special case

    Bayesian Conditioning, the Reflection Principle, and Quantum Decoherence

    Get PDF
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require the agent's probabilities to satisfy van Fraassen's [1984] reflection principle (which entails a related constraint pointed out by Goldstein [1983]). We then exhibit the specialized assumption needed to recover Bayesian conditioning from an analogous reflection-style consideration. Bringing the argument to the context of quantum measurement theory, we show that "quantum decoherence" can be understood in purely personalist terms---quantum decoherence (as supposed in a von Neumann chain) is not a physical process at all, but an application of the reflection principle. From this point of view, the decoherence theory of Zeh, Zurek, and others as a story of quantum measurement has the plot turned exactly backward.Comment: 14 pages, written in memory of Itamar Pitowsk

    A geometric proof of the Kochen-Specker no-go theorem

    Full text link
    We give a short geometric proof of the Kochen-Specker no-go theorem for non-contextual hidden variables models. Note added to this version: I understand from Jan-Aake Larsson that the construction we give here actually contains the original Kochen-Specker construction as well as many others (Bell, Conway and Kochen, Schuette, perhaps also Peres).Comment: This paper appeared some years ago, before the author was aware of quant-ph. It is relevant to recent developments concerning Kochen-Specker theorem

    Jump-like unravelings for non-Markovian open quantum systems

    Full text link
    Non-Markovian evolution of an open quantum system can be `unraveled' into pure state trajectories generated by a non-Markovian stochastic (diffusive) Schr\"odinger equation, as introduced by Di\'osi, Gisin, and Strunz. Recently we have shown that such equations can be derived using the modal (hidden variable) interpretation of quantum mechanics. In this paper we generalize this theory to treat jump-like unravelings. To illustrate the jump-like behavior we consider a simple system: A classically driven (at Rabi frequency Ω\Omega) two-level atom coupled linearly to a three mode optical bath, with a central frequency equal to the frequency of the atom, ω0\omega_0, and the two side bands have frequencies ω0±Ω\omega_0\pm\Omega. In the large Ω\Omega limit we observed that the jump-like behavior is similar to that observed in this system with a Markovian (broad band) bath. This is expected as in the Markovian limit the fluorescence spectrum for a strongly driven two level atom takes the form of a Mollow triplet. However the length of time for which the Markovian-like behaviour persists depends upon {\em which} jump-like unraveling is used.Comment: 11 pages, 5 figure

    Degree of explanation

    Get PDF
    Partial explanations are everywhere. That is, explanations citing causes that explain some but not all of an effect are ubiquitous across science, and these in turn rely on the notion of degree of explanation. I argue that current accounts are seriously deficient. In particular, they do not incorporate adequately the way in which a cause’s explanatory importance varies with choice of explanandum. Using influential recent contrastive theories, I develop quantitative definitions that remedy this lacuna, and relate it to existing measures of degree of causation. Among other things, this reveals the precise role here of chance, as well as bearing on the relation between causal explanation and causation itself

    Remarks on Causality in Relativistic Quantum Field Theory

    Get PDF
    It is shown that the correlations predicted by relativistic quantum field theory in locally normal states between projections in local von Neumann algebras \cA(V_1),\cA(V_2) associated with spacelike separated spacetime regions V1,V2V_1,V_2 have a (Reichenbachian) common cause located in the union of the backward light cones of V1V_1 and V2V_2. Further comments on causality and independence in quantum field theory are made.Comment: 10 pages, Latex, Quantum Structures 2002 Conference Proceedings submission. Minor revision of the order of definitions on p.

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page
    • …
    corecore