10,959 research outputs found

    Local environments

    Get PDF

    On the interaction of ultrasound with cracks: Applications to fatigue crack growth

    Get PDF
    Partial contact of two rough fatigue crack surfaces leads to transmission and diffraction of an acoustic signal at those contacts. Recent experimental and theoretical efforts to understand and quantify such contact in greater detail are discussed. The objective is to develop an understanding of the closure phenomenon and its application to the interpretation of fatigue data, in particular the R-ratio, spike overload/underload and threshold effects on crack propagation

    Light propagation and fluorescence quantum yields in liquid scintillators

    Full text link
    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.Comment: 11 pages, 3 figures, 1 tabl

    Correlations in nuclear energy recurrence relations

    Full text link
    The excitation energies of states belonging to the ground state bands of heavy even-even nuclei are analysed using recurrence relations. Excellent agreement with experimental data at the 10 keV level is obtained by taking into account strong correlations which emerge in the analysis. This implies that the excitation energies can be written as a polynomial of maximum degree four in the angular momentum.Comment: 4 pages, 1 figure, 1 table, 9 reference

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Cavity QED determination of atomic number statistics in optical lattices

    Get PDF
    We study the reflection of two counter-propagating modes of the light field in a ring resonator by ultracold atoms either in the Mott insulator state or in the superfluid state of an optical lattice. We obtain exact numerical results for a simple two-well model and carry out statistical calculations appropriate for the full lattice case. We find that the dynamics of the reflected light strongly depends on both the lattice spacing and the state of the matter-wave field. Depending on the lattice spacing, the light field is sensitive to various density-density correlation functions of the atoms. The light field and the atoms become strongly entangled if the latter are in a superfluid state, in which case the photon statistics typically exhibit complicated multimodal structures.Comment: 10 pages revtex, 13 figure

    alpha-nucleus potentials for the neutron-deficient p nuclei

    Full text link
    alpha-nucleus potentials are one important ingredient for the understanding of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical gamma-process where these p nuclei are produced by a series of (gamma,n), (gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus potential at the astrophysically relevant sub-Coulomb energies which is derived from the analysis of alpha decay data and from a previously established systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    Fine structure in the {\alpha}-decay of odd-even nuclei

    Full text link
    Systematic study on {\alpha}-decay fine structure is presented for the first time in the case of odd-even nuclei in the range 83 \leq Z \leq 101. The model used for the study is the recently proposed Coulomb and proximity potential model for deformed nuclei (CPPMDN), which employs deformed Coulomb potential, deformed two term proximity potential and centrifugal potential. The computed partial half lives, total half lives and branching ratios are compared with experimental data and are in good agreement. The standard deviation of partial half-life is 1.08 and that for branching ratio is 1.21. Our formalism is also successful in predicting angular momentum hindered and structure hindered transitions. The present study reveals that CPPMDN is a unified theory which is successful in explaining alpha decay from ground and isomeric state; and alpha fine structure of even-even, even-odd and odd-even nuclei. Our study relights that the differences in the parent and daughter surfaces or the changes in the deformation parameters as well as the shell structure of the parent and daughter nuclei, influences the alpha decay probability.Comment: 35 pages, 5 figure
    corecore