30 research outputs found

    Quantum Gravity: Unification of Principles and Interactions, and Promises of Spectral Geometry

    No full text
    Quantum gravity was born as that branch of modern theoretical physics that tries to unify its guiding principles, i.e., quantum mechanics and general relativity. Nowadays it is providing new insight into the unification of all fundamental interactions, while giving rise to new developments in modern mathematics. It is however unclear whether it will ever become a falsifiable physical theory, since it deals with Planck-scale physics. Reviewing a wide range of spectral geometry from index theory to spectral triples, we hope to dismiss the general opinion that the mere mathematical complexity of the unification programme will obstruct that programme

    A remark on the space of metrics having non-trivial harmonic spinors

    Get PDF
    Let M be a closed spin manifold of dimension congruent to 3 modulo 4. We give a simple proof of the fact that the space of metrics on M with invertible Dirac operator is either empty or it has infinitely many path components

    Optimal eigenvalues estimate for the Dirac operator on domains with boundary

    Get PDF
    We give a lower bound for the eigenvalues of the Dirac operator on a compact domain of a Riemannian spin manifold under the \MIT bag boundary condition. The limiting case is characterized by the existence of an imaginary Killing spinor.Comment: 10 page

    On a spin conformal invariant on manifolds with boundary

    Get PDF
    On a n-dimensional connected compact manifold with non-empty boundary equipped with a Riemannian metric, a spin structure and a chirality operator, we study some properties of a spin conformal invariant defined from the first eigenvalue of the Dirac operator under the chiral bag boundary condition. More precisely, we show that we can derive a spinorial analogue of Aubin's inequality.Comment: 26 page

    A K-theoretical Invariant and Bifurcation for Homoclinics of Hamiltonian Systems

    Get PDF
    We revisit a K-theoretical invariant that was invented by the first author some years ago for studying multiparameter bifurcation of branches of critical points of functionals. Our main aim is to apply this invariant to investigate bifurcation of homoclinic solutions of families of Hamiltonian systems which are parametrised by tori

    Gravitational and axial anomalies for generalized Euclidean Taub-NUT metrics

    Full text link
    The gravitational anomalies are investigated for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. In order to evaluate the axial anomalies, the index of the Dirac operator for these metrics with the APS boundary condition is computed. The role of the Killing-Yano tensors is discussed for these two types of quantum anomalies.Comment: 23 page

    The Maslov index in weak symplectic functional analysis

    Get PDF
    We recall the Chernoff-Marsden definition of weak symplectic structure and give a rigorous treatment of the functional analysis and geometry of weak symplectic Banach spaces. We define the Maslov index of a continuous path of Fredholm pairs of Lagrangian subspaces in continuously varying Banach spaces. We derive basic properties of this Maslov index and emphasize the new features appearing.Comment: 34 pages, 13 figures, 45 references, to appear in Ann Glob Anal Geom. The final publication will be available at http://www.springerlink.com. arXiv admin note: substantial text overlap with arXiv:math/040613

    Perturbation of sectorial projections of elliptic pseudo-differential operators

    No full text
    Over a closed manifold, we consider the sectorial projection of an elliptic pseudo-differential operator A of positive order with two rays of minimal growth. We show that it depends continuously on A when the space of pseudo-differential operators is equipped with a certain topology which we explicitly describe. Our main application deals with a continuous curve of arbitrary first order linear elliptic differential operators over a compact manifold with boundary. Under the additional assumption of the weak inner unique continuation property, we derive the continuity of a related curve of Calderon projections and hence of the Cauchy data spaces of the original operator curve. In the Appendix, we describe a topological obstruction against a verbatim use of R. Seeley's original argument for the complex powers, which was seemingly overlooked in previous studies of the sectorial projection.Comment: 30 pages, 2 figures; v3: major revision, shortened, several references added, some material moved into an appendix; v4: final version, accepted for publication in Journal of Pseudo-Differential Operators and Application
    corecore