588 research outputs found
The extreme vulnerability of interdependent spatially embedded networks
Recent studies show that in interdependent networks a very small failure in
one network may lead to catastrophic consequences. Above a critical fraction of
interdependent nodes, even a single node failure can invoke cascading failures
that may abruptly fragment the system, while below this "critical dependency"
(CD) a failure of few nodes leads only to small damage to the system. So far,
the research has been focused on interdependent random networks without space
limitations. However, many real systems, such as power grids and the Internet,
are not random but are spatially embedded. Here we analytically and numerically
analyze the stability of systems consisting of interdependent spatially
embedded networks modeled as lattice networks. Surprisingly, we find that in
lattice systems, in contrast to non-embedded systems, there is no CD and
\textit{any} small fraction of interdependent nodes leads to an abrupt
collapse. We show that this extreme vulnerability of very weakly coupled
lattices is a consequence of the critical exponent describing the percolation
transition of a single lattice. Our results are important for understanding the
vulnerabilities and for designing robust interdependent spatial embedded
networks.Comment: 13 pages, 5 figure
Population dynamics and identification of efficient strains of Azospirillum in maize ecosystems of Bihar (India)
Information on inoculum load and diversity of native microbial community is an important prerequisite for crop management of microbial origin. Azospirillum has a proven role in benefiting the maize (Zea mays) crop in terms of nutrient (nitrogen) supply as well as plant growth enhancement. Bihar state has highest average national maize productivity although fertilizer consumption is minimum, indicating richness of Azospirillum both in terms of population and diversity in soils. An experiment was planned to generate basic information on Azospirillum population variation in maize soils under different agricultural practices and soil types of Bihar, to identify suitable agricultural practices supporting the target microorganism and efficient Azospirillum strain(s). No tillage, growing traditional maize cultivar, land use history (diara soil having history of maize cultivation), soil organic carbon (>1%) and intercrop with oat supported prevalence of Azospirillum in maize rhizosphere. Native Azospirillum population varied from 1 million to 1 billion/g soil under diverse agricultural practices and soil types. Such richness, however, does not necessarily mean that artificial inoculation of Azospirillum is not required in Bihar soils as 92% of Azospirillum isolates (50 isolates) were poor in nitrogen-fixing ability and 88% were poor on IAA production. Efficient strains of Azospirillum based on growth (three), acetylene reduction assay (three), IAA production (three), broad range of pH (two) and temperature tolerance were identified. The findings suggested that maize crop in Bihar should be inoculated in universal mode rather than site-specific mode
Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process
Piriformospora indica, a mycorrhizal-like fungus able to establish associations with roots of a wide range of plants, supporting plant nutrition and increasing plant resistance and tolerance to stress, was shown to solubilise phosphate applied in the form of animal bone char (HABO) in fermentation systems. The process of P solubilisation was caused most likely by proton extrusion and medium pH lowering. The fungal mycelium was successfully immobilized/retained in a polyurethane foam carrier. Further employment of the immobilized mycelium in repeated-batch fermentation process resulted in at least 5 cycles of P solubilization. The concentration of soluble P increased during the experiment with 1.0 and 3.0 g HABO l−1 and at the end of the 5th batch cycle reached 40.8 and 120 mg l−1, respectively. The resulting final liquid product, without or with solubilized phosphate, was found to significantly increase plant growth and P plant uptake. It can be used as a biostimulant containing microbial plant growth-promoting substances and soluble P derived from renewable sources (HABO) thus supporting the development of sustainable agro-ecosystems.This work was supported by Project CTM2014-53186-R, Ministerio de Economia y Competitividad-ES/EC FEDER Fund and the sabbatical Grant PRX16/00277 to NV
Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum aestivum L.) crops
Abstract In the pursuit of sustainable agriculture, bioinoculants usage as providers of a crop's needs is a method to limit environmental damage. In this study, a collection of cultivable putative plant growth promoting (PGP) bacteria associated with wheat crops was obtained and this bacterial sample was characterized in relation to the functional diversity of certain PGP features. The isolates were obtained through classical cultivation methods, identified by partial 16S rRNA gene sequencing and characterized for PGP traits of interest. Functional diversity characterization was performed using Categorical Principal Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most abundant genera found among the 346 isolates were Pseudomonas, Burkholderia, and Enterobacter. Occurrence of PGP traits was affected by genus, niche, and sampling site. A large number of genera grouped together with the ability to produce indolic compounds; phosphate solubilization and siderophores production formed a second group related to fewer genera, in which the genus Burkholderia has a great importance. The results obtained may help future studies aiming prospection of putative plant growth promoting bacteria regarding the desired organism and PGP trait
Variations in task constraints shape emergent performance outcomes and complexity levels in balancing
This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance
Recommended from our members
Understanding data and information needs for palliative cancer care to inform digital health intervention development in Nigeria, Uganda and Zimbabwe: protocol for a multicountry qualitative study
Introduction: Palliative care is a clinically and cost‐effective component of cancer services in sub-Saharan Africa (SSA). Despite the significant need for palliative cancer care in SSA, coverage remains inadequate. The exploration of digital health approaches could support increases in the quality and reach of palliative cancer care services in SSA. However, there is currently a lack of any theoretical underpinning or data to understand stakeholder drivers for digital health components in this context. This project addresses this gap through engaging with key stakeholders to determine data and information needs that could be supported through digital health interventions.
Methods and analysis: This is a multicountry, cross-sectional, qualitative study conducted in Nigeria, Uganda and Zimbabwe. In-depth interviews will be conducted in patients with advanced cancer (n=20), caregivers (n=15), health professionals (n=20) and policy-makers (n=10) in each of the three participating countries. Data from a total of 195 interviews will transcribed verbatim and translated into English before being imported into NVivo software for deductive framework analysis. The analysis will seek to understand the acceptability and define mechanisms of patient-level data capture and usage via digital technologies.
Ethics and dissemination: Ethics approvals have been obtained from the Institutional Review Boards of University of Leeds (Ref: MREC 18–032), Research Council of Zimbabwe (Ref: 03507), Medical Research Council of Zimbabwe (Ref: MRCZ/A/2421), Uganda Cancer Institute (Ref: 19–2018), Uganda National Council of Science and Technology (Ref: HS325ES) and College of Medicine University of Lagos (Ref: HREC/15/04/2015). The project seeks to determine optimal mechanisms for the design and development of subsequent digital health interventions to support development, access to, and delivery of palliative cancer care in SSA. Dissemination of these findings will occur through newsletters and press releases, conference presentations, peer-reviewed journals and social media.
Trial registration number: ISRCTN1572771
A-Site Residues Move Independently from P-Site Residues in all-Atom Molecular Dynamics Simulations of the 70S Bacterial Ribosome
The ribosome is a large macromolecular machine, and correlated motion between residues is necessary for coordinating function across multiple protein and RNA chains. We ran two all-atom, explicit solvent molecular dynamics simulations of the bacterial ribosome and calculated correlated motion between residue pairs by using mutual information. Because of the short timescales of our simulation (ns), we expect that dynamics are largely local fluctuations around the crystal structure. We hypothesize that residues that show coupled dynamics are functionally related, even on longer timescales. We validate our model by showing that crystallographic B-factors correlate well with the entropy calculated as part of our mutual information calculations. We reveal that A-site residues move relatively independently from P-site residues, effectively insulating A-site functions from P-site functions during translation
Formulations of Plant Growth-Promoting Microbes for Field Applications
Development of a plant growth-promoting (PGP) microbe needs several steps starting with isolation of a pure culture, screening of its PGP or antagonistic traits by means of different efficacy bioassays performed in vitro, in vivo or in trials under greenhouse and/or field conditions. In order to maximize the potential of an efficient PGP microbe, it is essential to optimize mass multiplication protocols that promote product quality and quantity and a product formulation that enhances bioactivity, preserves shelf life and aids product delivery. Selection of formulation is very crucial as it can determine the success or failure of a PGP microbe. A good carrier material should be able to deliver the right number of viable cells in good physiological conditions, easy to use and economically affordable by the farmers. Several carrier materials have been used in formulation that include peat, talc, charcoal, cellulose powder, farm yard manure, vermicompost and compost, lignite, bagasse and press mud. Each formulation has its advantages and disadvantages but the peat based carrier material is widely used in different part of the world. This chapter gives a comprehensive analysis of different formulations and the quality of inoculants available in the market, with a case study conducted in five-states of India
- …