88 research outputs found

    Magnetoresistance in Fe1−x_{1-x}Gax_x thin films presenting striped magnetic pattern: the role of closure domains and domain walls

    Full text link
    In this work we show the existence of closure domains in Fe1−x_{1-x}Gax_x thin films featuring a striped magnetic pattern and study the effect of the magnetic domain arrangement on the magnetotransport properties. By means of X-ray resonant magnetic scattering, we experimentally demonstrate the presence of such closure domains and estimate their sizes and relative contribution to surface magnetization. Magnetotransport experiments show that the behavior of the magnetoresistance depends on the measurement geometry as well as on the temperature. When the electric current ows perpendicular to the stripe direction, the resistivity decreases when a magnetic field is applied along the stripe direction (negative magnetoresistance) in all the studied temperature range, and the calculations indicate that the main source is the anisotropic magnetoresistance. In the case of current flowing parallel to the stripe domains, the magnetoresistance changes sign, being positive at room temperature and negative at 100 K. To explain this behavior, the contribution to magnetoresistance from the domain walls must be considered besides the anisotropic one.Comment: 8 pages, 5 figure

    OP0137 GENOME-WIDE WHOLE-BLOOD TRANSCRIPTOME PROFILING IN A LARGE EUROPEAN COHORT OF SYSTEMIC SCLEROSIS PATIENTS

    Get PDF
    Background:The analysis of annotated transcripts from genome-wide expression studies data is of paramount importance to understand the molecular phenomena underlying the occurrence of complex diseases, such as systemic sclerosis (SSc).Objectives:To perform whole-blood transcriptome and pathway analysis on whole-blood (WB) RNA collected in two cohorts of European SSc patients. Via a discovery and validation strategy we aimed at characterizing the molecular pathways that differentiate SSc from controls and that are reproducible in geographically diverse populations.Methods:WB samples from 252 controls and 162 SSc patients were collected in RNA stabilizers. Patients were divided into a discovery (n=79; Southern Europe) and validation cohort (n=83; Central-Western Europe). RNA sequencing was performed by an Illumina assay. Functional annotations of Reactome pathways were performed with the FAIME algorithm. In parallel, a immunophenotyping analysis on 28 circulating cell populations was assessed. We then tested: the presence of differentially expressed genes or pathways and the correlation between absolute cell counts and RNA transcripts/FAIME scores in regression models. Results significant in both populations were considered as replicated.Results:A total of 15224 genes and 1277 related functional pathways were available for analysis. Among these, 99 genes and 225 pathways were significant in both sets. The heatmap in figure shows the relative expression of replicated pathways and the distribution of cases and controls (red and green bars). Among the significant pathways we found a deregulation in: type-I IFN, TLR-cascade and signalling, function of the tumor suppressor p53 protein, platelet degranulation and activation. Correlation analysis showed that the count of several cell subtypes is jointly associated with RNA transcripts or FAIME scores with strong differences in relation to the geographical origin of samples; neutrophils emerged as the major determinant of gene expression in SSc-whole-blood samples.Conclusion:We discovered a set of differentially expressed genes and pathways that could be validated in two independent sets of SSc patients highlighting a number of deregulated molecular processes that have relevance for the pathogenesis of autoimmunity and SSc.Acknowledgments:This work was supported by EU/EFPIA/Innovative Medicines Initiative Joint Undertaking PRECISESADS grant No. 115565.Disclosure of Interests:Lorenzo Beretta Grant/research support from: Pfizer, Guillermo Barturen: None declared, Barbara Vigone: None declared, Chiara Bellocchi: None declared, Nicolas Hunzelmann: None declared, Ellen Delanghe: None declared, LĂĄszlĂł KovĂĄcs: None declared, Ricard Cervera: None declared, Maria Gerosa: None declared, Rafaela Ortega Castro: None declared, Isabel Almeida: None declared, Divi Cornec: None declared, Carlo Chizzolini Consultant of: Boehringer Ingelheim, Roche, Jacques-Olivier Pers: None declared, Zuzanna Makowska Employee of: Bayer AG, Anne buttgereit Employee of: Bayer AG, Ralf Lesche Employee of: Bayer, Martin Kerick: None declared, Marta Alarcon-Riquelme: None declared, Javier Martin Ibanez: None declare

    WordCluster: detecting clusters of DNA words and genomic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many <it>k-</it>mers (or DNA words) and genomic elements are known to be spatially clustered in the genome. Well established examples are the genes, TFBSs, CpG dinucleotides, microRNA genes and ultra-conserved non-coding regions. Currently, no algorithm exists to find these clusters in a statistically comprehensible way. The detection of clustering often relies on densities and sliding-window approaches or arbitrarily chosen distance thresholds.</p> <p>Results</p> <p>We introduce here an algorithm to detect clusters of DNA words (<it>k-</it>mers), or any other genomic element, based on the distance between consecutive copies and an assigned statistical significance. We implemented the method into a web server connected to a MySQL backend, which also determines the co-localization with gene annotations. We demonstrate the usefulness of this approach by detecting the clusters of CAG/CTG (cytosine contexts that can be methylated in undifferentiated cells), showing that the degree of methylation vary drastically between inside and outside of the clusters. As another example, we used <it>WordCluster </it>to search for statistically significant clusters of olfactory receptor (OR) genes in the human genome.</p> <p>Conclusions</p> <p><it>WordCluster </it>seems to predict biological meaningful clusters of DNA words (<it>k-</it>mers) and genomic entities. The implementation of the method into a web server is available at <url>http://bioinfo2.ugr.es/wordCluster/wordCluster.php</url> including additional features like the detection of co-localization with gene regions or the annotation enrichment tool for functional analysis of overlapped genes.</p

    MethylExtract: High-Quality methylation maps and SNV calling from whole genome bisulfite sequencing data

    Get PDF
    [v2; ref status: indexed, http://f1000r.es/301]Whole genome methylation profiling at a single cytosine resolution is now feasible due to the advent of high-throughput sequencing techniques together with bisulfite treatment of the DNA. To obtain the methylation value of each individual cytosine, the bisulfite-treated sequence reads are first aligned to a reference genome, and then the profiling of the methylation levels is done from the alignments. A huge effort has been made to quickly and correctly align the reads and many different algorithms and programs to do this have been created. However, the second step is just as crucial and non-trivial, but much less attention has been paid to the final inference of the methylation states. Important error sources do exist, such as sequencing errors, bisulfite failure, clonal reads, and single nucleotide variants. We developed MethylExtract, a user friendly tool to: i) generate high quality, whole genome methylation maps and ii) detect sequence variation within the same sample preparation. The program is implemented into a single script and takes into account all major error sources. MethylExtract detects variation (SNVs – Single Nucleotide Variants) in a similar way to VarScan, a very sensitive method extensively used in SNV and genotype calling based on non-bisulfite-treated reads. The usefulness of MethylExtract is shown by means of extensive benchmarking based on artificial bisulfite-treated reads and a comparison to a recently published method, called Bis-SNP. MethylExtract is able to detect SNVs within High-Throughput Sequencing experiments of bisulfite treated DNA at the same time as it generates high quality methylation maps. This simultaneous detection of DNA methylation and sequence variation is crucial for many downstream analyses, for example when deciphering the impact of SNVs on differential methylation. An exclusive feature of MethylExtract, in comparison with existing software, is the possibility to assess the bisulfite failure in a statistical way. The source code, tutorial and artificial bisulfite datasets are available at http://bioinfo2.ugr.es/MethylExtract/ and http://sourceforge.net/projects/methylextract/, and also permanently accessible from 10.5281/zenodo.7144.This work was supported by the Spanish Government [BIO2008-01353 to JLO and BIO2010-20219 to MH], and Basque country 'AE' grant (GB)

    Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183

    Get PDF
    Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission

    Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling.

    Get PDF
    BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study

    Changes in circulating microRNA levels can be identified as early as day 8 of pregnancy in cattle

    Get PDF
    <div><p>Poor reproductive performance remains a major issue in the dairy industry, with low conception rates having a significant impact on milk production through extended calving intervals. A major limiting factor is the lack of reliable methods for early pregnancy diagnosis. Identification of animals within a herd that fail to conceive within 3 weeks after insemination would allow early re-insemination and shorten calving intervals. In a previous study, we found an increase in plasma miR-26a levels in Day 16-pregnant relative to non-pregnant heifers, however changes in miRNA levels that early during pregnancy were very small which likely prevented the identification of robust biomarkers. In this study, we extended our analyses to a wider interval during pregnancy (Days 8 to 60, n = 11 heifers) with the rationale that this may facilitate the identification of additional early pregnancy miRNA biomarkers. Using small RNA sequencing we identified a total of 77 miRNAs that were differentially expressed on Day 60 relative to Day 0 of pregnancy. We selected 14 miRNAs for validation by RT-qPCR and confirmed significant differences in the expression of let-7f, let-7c, miR-30c, miR-101, miR-26a, miR-205 and miR-143 between Days 0 and 60. RT-qPCR profiling throughout Days 0, 8, 16 and 60 of pregnancy showed a distinct increase in circulating levels of miR-26a (3.1-fold, P = 0.046) as early as Day 8 of pregnancy. In summary, in contrast to earlier stages of pregnancy (≀ Day 24), marked differences in the levels of multiple miRNAs can be detected in circulation by Day 60 in cattle. Retrospective analyses showed miR-26a levels to be increased in circulation as early as Day 8, sooner than previously reported in any species, suggesting a biological role for this miRNA in the very early events of pregnancy.</p></div

    Discovery and Preclinical Pharmacology of INE963, a Potent and Fast-Acting Blood-Stage Antimalarial with a High Barrier to Resistance and Potential for Single-Dose Cures in Uncomplicated Malaria.

    Get PDF
    A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of INE963 (1), which demonstrates potent cellular activity against Pf 3D7 (EC50 = 0.006 ÎŒM) and achieves artemisinin-like kill kinetics in vitro with a parasite clearance time of \u3c24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant potential for INE963 (1) to provide a curative therapy for uncomplicated malaria with short dosing regimens. For these reasons, INE963 (1) was progressed through GLP toxicology studies and is now undergoing Ph1 clinical trials
    • 

    corecore