188 research outputs found

    Explicit boundary form factors: the scaling Lee-Yang model

    Get PDF
    We provide explicit expressions for boundary form factors in the boundary scaling Lee-Yang model for operators with the mildest ultraviolet behavior for all integrable boundary conditions. The form factors of the boundary stress tensor take a determinant form, while the form factors of the boundary primary field contain additional explicit polynomials.Comment: 18 pages, References adde

    Scaling function in AdS/CFT from the O(6) sigma model

    Get PDF
    Asymptotic behavior of the anomalous dimensions of Wilson operators with high spin and twist is governed in planar N=4 SYM theory by the scaling function which coincides at strong coupling with the energy density of a two-dimensional bosonic O(6) sigma model. We calculate this function by combining the two-loop correction to the energy density for the O(n) model with two-loop correction to the mass gap determined by the all-loop Bethe ansatz in N=4 SYM theory. The result is in agreement with the prediction coming from the thermodynamical limit of the quantum string Bethe ansatz equations, but disagrees with the two-loop stringy corrections to the folded spinning string solution.Comment: 25 pages, 2 figure

    Six and seven loop Konishi from Luscher corrections

    Get PDF
    In the present paper we derive six and seven loop formulas for the anomalous dimension of the Konishi operator in N=4 SYM from string theory using the technique of Luscher corrections. We derive analytically the integrand using the worldsheet S-matrix and evaluate the resulting integral and infinite sum using a combination of high precision numerical integration and asymptotic expansion. We use this high precision numerical result to fit the integer coefficients of zeta values in the final analytical answer. The presented six and seven loop results can be used as a cross-check with FiNLIE on the string theory side, or with direct gauge theory computations. The seven loop level is the theoretical limit of this Luscher approach as at eight loops double-wrapping corrections will appear.Comment: 18 pages, typos correcte

    Geometry of W-algebras from the affine Lie algebra point of view

    Get PDF
    To classify the classical field theories with W-symmetry one has to classify the symplectic leaves of the corresponding W-algebra, which are the intersection of the defining constraint and the coadjoint orbit of the affine Lie algebra if the W-algebra in question is obtained by reducing a WZNW model. The fields that survive the reduction will obey non-linear Poisson bracket (or commutator) relations in general. For example the Toda models are well-known theories which possess such a non-linear W-symmetry and many features of these models can only be understood if one investigates the reduction procedure. In this paper we analyze the SL(n,R) case from which the so-called W_n-algebras can be obtained. One advantage of the reduction viewpoint is that it gives a constructive way to classify the symplectic leaves of the W-algebra which we had done in the n=2 case which will correspond to the coadjoint orbits of the Virasoro algebra and for n=3 which case gives rise to the Zamolodchikov algebra. Our method in principle is capable of constructing explicit representatives on each leaf. Another attractive feature of this approach is the fact that the global nature of the W-transformations can be explicitly described. The reduction method also enables one to determine the ``classical highest weight (h. w.) states'' which are the stable minima of the energy on a W-leaf. These are important as only to those leaves can a highest weight representation space of the W-algebra be associated which contains a ``classical h. w. state''.Comment: 17 pages, LaTeX, revised 1. and 7. chapter

    Exactly solvable model of the 2D electrical double layer

    Get PDF
    We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike ±\pm unit charges in the stability-against-collapse regime of reduced inverse temperatures 0≤β<20\le \beta<2. If there is a potential difference between the bulk interior of the electrolyte and the grounded interface, the electrolyte region close to the interface (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the non-perturbative result for the asymptotic density profile at a strictly nonzero β\beta that the Debye-H\"uckel β→0\beta\to 0 limit is a delicate issue.Comment: 14 page

    Luscher's mu-term and finite volume bootstrap principle for scattering states and form factors

    Full text link
    We study the leading order finite size correction (Luscher's mu-term) associated to moving one-particle states, arbitrary scattering states and finite volume form factors in 1+1 dimensional integrable models. Our method is based on the idea that the mu-term is intimately connected to the inner structure of the particles, ie. their composition under the bootstrap program. We use an appropriate analytic continuation of the Bethe-Yang equations to quantize bound states in finite volume and obtain the leading mu-term (associated to symmetric particle fusions) by calculating the deviations from the predictions of the ordinary Bethe-Yang quantization. Our results are compared to numerical data of the E8 scattering theory obtained by truncated fermionic space approach. As a by-product it is shown that the bound state quantization does not only yield the correct mu-term, but also provides the sum over a subset of higher order corrections as well.Comment: 21 pages, 35 eps figures, LaTeX2e fil

    One-point functions in massive integrable QFT with boundaries

    Get PDF
    We consider the expectation value of a local operator on a strip with non-trivial boundaries in 1+1 dimensional massive integrable QFT. Using finite volume regularisation in the crossed channel and extending the boundary state formalism to the finite volume case we give a series expansion for the one-point function in terms of the exact form factors of the theory. The truncated series is compared with the numerical results of the truncated conformal space approach in the scaling Lee-Yang model. We discuss the relevance of our results to quantum quench problems.Comment: 43 pages, 20 figures, v2: typos correcte
    • …
    corecore