744 research outputs found

    Chronicles of Fairfield University (1942 - 1992). Book 2: An Era of Steady Growth and Change.

    Get PDF
    The six Chronicles of Fairfield University were published in conjunction with the observance of the 50th Anniversary of the founding of Fairfield University and Fairfield College Preparatory School. The six books included in the Chronicles of Fairfield University are as follows: Book One: The Founding Years; Book Two: An Era of Steady Growth and Change; Book Three: Turmoil and Triumph: the McInnes Years; Book Four: Building Years: Change and Development; Book Five: Lore and Legends; Book Six: Ignatian Character.https://digitalcommons.fairfield.edu/archives-historicalresources/1001/thumbnail.jp

    Silicon Waveguides and Ring Resonators at 5.5 {\mu}m

    Full text link
    We demonstrate low loss ridge waveguides and the first ring resonators for the mid-infrared, for wavelengths ranging from 5.4 to 5.6 {\mu}m. Structures were fabricated using electron-beam lithography on the silicon-on-sapphire material system. Waveguide losses of 4.0 +/- 0.7 dB/cm are achieved, as well as Q-values of 3.0 k.Comment: 4 pages, 4 figures, includes supplemental material

    When does the Lorenz 1963 model exhibit the signal-to-noise paradox?

    Get PDF
    Seasonal prediction systems based on Earth System Models exhibit a lower proportion of predictable signal to unpredictable noise than the actual world. This puzzling phenomena has been widely referred to as the signal-to-noise paradox (SNP). Here, we investigate the SNP in a conceptual framework of a seasonal prediction system based on the Lorenz, 1963 Model (L63). We show that the SNP is not apparent in L63, if the uncertainty assumed for the initialization of the ensemble is equal to the uncertainty in the starting conditions. However, if the uncertainty in the initialization overestimates the uncertainty in the starting conditions, the SNP is apparent. In these experiments the metric used to quantify the SNP also shows a clear lead-time dependency on subseasonal timescales. We therefore, formulate the alternative hypothesis to previous studies that the SNP could also be related to the magnitude of the initial ensemble spread. Plain Language Summary Comprehensive Earth System Models seem to be better at predicting the real observed climate system than expected based on their ability to predict their own modelled climate system. This puzzling phenomena is known as the signal-to-noise paradox (SNP) and its origin is still under intensive scientific debate with some studies pointing to deficiencies in the model formulation. In this study we investigate under which conditions the SNP can be obtained using a simple conceptual framework for a climate prediction system based on a simple dynamical model. Our results show that the SNP can be reproduced in the absence of model deficiencies if the model overestimates the observational uncertainty. We also investigate the development of the SNP on subseasonal timescales and find a clear dependency on the lead-time of the prediction. Our results lead us to formulate an alternative hypothesis to previous studies on the origin of the SNP

    Testrun results from prototype fiber detectors for high rate particle tracking

    Full text link
    A fiber detector concept has been realized allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occupancy. Three full size prototypes have been build by different producers and tested at a 3 GeV electron beam at DESY. After 3 m of light guides 8-10 photoelectrons were registrated by multichannel photomultipliers providing an efficiency of more than 99%. Using all available data a resolution of 0.086 mm was measured.Comment: 18 pages, 17 figure

    CMOS compatible athermal silicon microring resonators

    Full text link
    Silicon photonics promises to alleviate the bandwidth bottleneck of modern day computing systems. But silicon photonic devices have the fundamental problem of being highly sensitive to ambient temperature fluctuations due to the high thermo-optic (TO) coefficient of silicon. Most of the approaches proposed to date to overcome this problem either require significant power consumption or incorporate materials which are not CMOS-compatible. Here we demonstrate a new class of optical devices which are passively temperature compensated, based on tailoring the optical mode confinement in silicon waveguides. We demonstrate the operation of a silicon photonic resonator over very wide temperature range of greater than 80 degrees. The fundamental principle behind this work can be extended to other photonic structures such as modulators, routers, switches and filters.Comment: 9 pages, 4 figure

    The present and future system for measuring the Atlantic meridional overturning circulation and heat transport

    Get PDF
    of the global combined atmosphere-ocean heat flux and so is important for the mean climate of the Atlantic sector of the Northern Hemisphere. This meridional heat flux is accomplished by both the Atlantic Meridional Overturning Circulation (AMOC) and by basin-wide horizontal gyre circulations. In the North Atlantic subtropical latitudes the AMOC dominates the meridional heat flux, while in subpolar latitudes and in the subtropical South Atlantic the gyre circulations are also important. Climate models suggest the AMOC will slow over the coming decades as the earth warms, causing widespread cooling in the Northern hemisphere and additional sea-level rise. Monitoring systems for selected components of the AMOC have been in place in some areas for decades, nevertheless the present observational network provides only a partial view of the AMOC, and does not unambiguously resolve the full variability of the circulation. Additional observations, building on existing measurements, are required to more completely quantify the Atlantic meridional heat transport. A basin-wide monitoring array along 26.5°N has been continuously measuring the strength and vertical structure of the AMOC and meridional heat transport since March 31, 2004. The array has demonstrated its ability to observe the AMOC variability at that latitude and also a variety of surprising variability that will require substantially longer time series to understand fully. Here we propose monitoring the Atlantic meridional heat transport throughout the Atlantic at selected critical latitudes that have already been identified as regions of interest for the study of deep water formation and the strength of the subpolar gyre, transport variability of the Deep Western Boundary Current (DWBC) as well as the upper limb of the AMOC, and inter-ocean and intrabasin exchanges with the ultimate goal of determining regional and global controls for the AMOC in the North and South Atlantic Oceans. These new arrays will continuously measure the full depth, basin-wide or choke-point circulation and heat transport at a number of latitudes, to establish the dynamics and variability at each latitude and then their meridional connectivity. Modeling studies indicate that adaptations of the 26.5°N type of array may provide successful AMOC monitoring at other latitudes. However, further analysis and the development of new technologies will be needed to optimize cost effective systems for providing long term monitoring and data recovery at climate time scales. These arrays will provide benchmark observations of the AMOC that are fundamental for assimilation, initialization, and the verification of coupled hindcast/forecast climate models

    Flow Phase Diagram for the Helium Superfluids

    Full text link
    The flow phase diagram for He II and 3^3He-B is established and discussed based on available experimental data and the theory of Volovik [JETP Letters {\bf{78}} (2003) 553]. The effective temperature - dependent but scale - independent Reynolds number Reeff=1/q=(1+α′)/αRe_{eff}=1/q=(1+\alpha')/\alpha, where α\alpha and α′\alpha' are the mutual friction parameters and the superfluid Reynolds number characterizing the circulation of the superfluid component in units of the circulation quantum are used as the dynamic parameters. In particular, the flow diagram allows identification of experimentally observed turbulent states I and II in counterflowing He II with the turbulent regimes suggested by Volovik.Comment: 2 figure
    • …
    corecore