
1. Introduction
Recent studies identified a potential inconsistency in seasonal dynamical predictions of different climatic 
variables in the North Atlantic (Eade et al., 2014): The reported skill of these predictions as measured by the 
correlation coefficient between simulations and observations (actual predictability) exceeds expectations 
based on model simulations (model predictability) and the models are therefore underconfident. Since the 
model predictability is determined by the signal-to-noise ratio (Kumar,  2009), this inconsistency is also 
known as “signal-to-noise paradox” (SNP, Dunstone et al., 2016). The SNP is puzzling, since seasonal pre-
diction systems usually tend to be overconfident (Weisheimer et al., 2019). Subsequent studies identified the 
SNP in seasonal predictions of the winter North Atlantic Oscillation (NAO; e.g., Baker et al., 2018; Dunstone 
et al., 2016; Scaife & Smith, 2018). However, the SNP is not limited to seasonal predictions in the North At-
lantic, but also appears in a variety of different processes and timescales, such as in decadal predictions of 
temperature, precipitation and mean sea level pressure (Smith et al., 2019) as well as in seasonal predictions 
of European summer rainfall (Dunstone et al., 2018). The origin of the SNP is still unknown and this study 
aims to contribute to its identification.

For forecasts subject to the SNP, a variety of consequences emerge: More ensemble members than necessary 
are needed to extract the predictable signal (Strommen, 2020) and single ensemble members cannot be 
treated as viable representations of the actual world (Scaife & Smith, 2018). Therefore, explaining the origin 
of the SNP is of great importance for the climate prediction community.

Abstract Seasonal prediction systems based on Earth System Models exhibit a lower proportion 
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framework of a seasonal prediction system based on the Lorenz, 1963 Model (L63). We show that the 
SNP is not apparent in L63, if the uncertainty assumed for the initialization of the ensemble is equal to 
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the uncertainty in the starting conditions, the SNP is apparent. In these experiments the metric used 
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formulate the alternative hypothesis to previous studies that the SNP could also be related to the 
magnitude of the initial ensemble spread.

Plain Language Summary Comprehensive Earth System Models seem to be better at 
predicting the real observed climate system than expected based on their ability to predict their own 
modelled climate system. This puzzling phenomena is known as the signal-to-noise paradox (SNP) and 
its origin is still under intensive scientific debate with some studies pointing to deficiencies in the model 
formulation. In this study we investigate under which conditions the SNP can be obtained using a simple 
conceptual framework for a climate prediction system based on a simple dynamical model. Our results 
show that the SNP can be reproduced in the absence of model deficiencies if the model overestimates the 
observational uncertainty. We also investigate the development of the SNP on subseasonal timescales and 
find a clear dependency on the lead-time of the prediction. Our results lead us to formulate an alternative 
hypothesis to previous studies on the origin of the SNP.
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Previous attempts of identifying the origin of the SNP have focused on either deficiency in the model for-
mulation or statistical uncertainties. Studies focusing on model deficiencies proposed hypotheses such as 
too weak stratosphere-troposphere interactions (O'Reilly et al., 2018; Stockdale et al., 2015) and too weak 
ocean-atmosphere coupling (Ossó et al., 2020; Smith et al., 2014). The latter is substantiated by the appar-
ently too weak persistence of the NAO (Zhang & Kirtman, 2019) and surface air temperature (Sévellec & 
Drijfhout, 2019) identified in uninitialized simulations. Since ocean-atmosphere feedback improves with 
increasing resolution, Sévellec and Drijfhout (2019) hypothesized that higher resolution prediction systems 
may suffer less from the SNP, however, Scaife et al. (2019) finds no discernible impact of atmospheric reso-
lution. In contrast, Weisheimer et al. (2019) focus on statistical uncertainties in the quantities used to assess 
the level of underconfidence. Furthermore, Strommen and Palmer (2018) and Strommen (2020) propose 
that the SNP might be related to deficiencies of the models in representing the regime behavior of the NAO. 
Despite these previous efforts, there is up to now no scientific consensus on the origin of the SNP.

Here, we investigate the occurrence of the SNP in a conceptual framework for an ensemble-based prediction 
system based on the dynamical Lorenz, 1963 Model (Lorenz, 1963). We conduct a variety of different exper-
iments using different parameters in the initialization of the ensemble. We then analyze these experiments 
with the purpose of examining under which conditions the SNP occurs for seasonal predictions in our frame-
work. We also analyze how the SNP evolves on subseasonal timescales in this framework, aiming at identify-
ing characteristics of the SNP, which might be in future studies related to the SNP in comprehensive ESMs.

2. Methods
2.1. General Model Description

The Lorenz 1963 model (Lorenz, 1963) describes atmospheric convection in an idealized setup and compris-
es the following three equations:
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where the dot denotes the derivative of a quantity with respect to time. The three dimensionless parameters 
ρ, σ and b describe the physical properties of the fluid and the idealized setup (for details see Lorenz, 1963). 
We set them as σ  =  10, ρ  =  28, and b  =  8/3. All numerical integrations are done using a fourth order 
Runge-Kutta method and a timestep of Δt = 0.01.

2.2. Creation of Idealized Hindcast Experiments

In the following the general setup of seasonal hindcast experiments in the L63 system is introduced, partly 
following Saetra et al. (2004):

 1.  Spinup
 The model is integrated starting with the initial conditions [1,1,1] for 100.000 timesteps allowing the 
trajectory to evolve to the model attractor.

 2.  Generating initial conditions
 The model is integrated for further 100.000 timesteps starting from the last timestep of the model-spinup. 
The set of all states that occur during this phase serves as a pool of initial conditions for the following 
hindcast experiments (Figure 1a, blue line).

 3.  Forecast
 (a)  A random state from the pool of initial conditions is chosen as the initial state of the real world 

(Figure 1a, black dots).
 (b)  The reference run is acquired by integrating the model for 2.000 time units starting from the initial 

state of the real world.
 (c)  The observation of the initial state of the real world is acquired by adding normally distributed 

noise with zero mean to each dimension on the initial state. The standard deviation (observational 
spread) is denoted σo and the same for each dimension.
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 (d)  A 100-member ensemble is initialized by adding normally distributed noise with zero mean to 
each dimension of the observation. The standard deviation (initial ensemble spread) is denoted σe 
and the same for each dimension.

 (e)  The time series for verification of the hindcast (verifying analysis), is obtained by adding normally 
distributed noise with zero mean on each dimension of the reference run with standard deviations 
corresponding to the observational spread for each dimension.

 4.  Hindcast Experiment
 The forecast (Step 3) is repeated 100 times each time with a different randomly chosen initial state. The 
set of these 100 forecasts combined with the verifying analysis is denoted a hindcast experiment.

2.3. Experiment Descriptions

We conduct in total four sets of experiments, each comprising multiple hindcast experiments, which are 
all calculated over 100 years and with 100 ensemble members with different and randomly chosen initial 
states. The first set consists of 100 hindcast experiments where initial and observational spread are equal 
(σe = σo = 0.01) for all experiments and which is therefore further referred to as the equal initial spread set. 
The second and third set also comprise 100 hindcasts, however the magnitude of the initial ensemble spread 
underestimates or overestimates the observational spread (σo = 0.01) by one order of magnitude and which 
is therefore further referred to as the low initial spread and high initial spread set, respectively. The fourth set 
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Figure 1. (a) Trajectory of the Lorenz-System used as a pool of initial conditions (blue line) for the initialization of 
hindcast experiments and 100 randomly chosen initial conditions (black dots). (b) Seasonal 100 years long hindcast 
experiment with 100 ensemble members in the Lorenz, 1963 Model, showing the analysis (black line), 100 individual 
ensemble forecasts for each year (blue dots) and the ensemble mean (blue line).
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(incremental initial spread) consists of 501 experiments where the initial ensemble spread is incremented 
over two orders of magnitude from σe = 0.001 to σe = 0.1, spaced evenly on a log scale with constant obser-
vational spread σo = 0.01.

2.4. Postprocessing and Statistical Analysis

2.4.1. Postprocessing

The raw hindcast experiments (forecasts and verifying analysis) are averaged over 0.1 time units (10 time-
steps) using a running mean. According to Palmer (1993), this period amounts to approximately 1 day in 
the real atmosphere. A month then corresponds to the average over 30 consecutive days (300 timesteps) 
and accordingly we define the season as the average over 90 consecutive days (900 timesteps). For a sea-
sonal prediction (Figure 1b) we leave a gap of 1 month (300 timesteps) between the initialization and the 
beginning of the season as general practice in some operational seasonal forecasting systems (e.g., Frhlich 
et al., 2020; Johnson et al., 2019).

We normalize the timeseries by subtracting their mean and dividing by the standard deviation. Mean and 
standard deviation are calculated over time and ensemble members. In this study all results are obtained 
for predictions of the x-component.

2.4.2. Calculation of the RPC

To test whether the amount of predictable signal relative to total variability is comparable in model and 
actual world, Eade et al. (2014) introduced the ratio of predictable components (RPC) as the ratio between 
the predictable component in the actual world (PCact) and the predictable component in the model (PCmod):

.act

mod

PCRPC
PC

 (1)

The predictable component in the actual world is estimated by the actual predictability (ACP) calculated by 
the correlation coefficient between the mean of the full ensemble and the verifying analysis. In this study 
we estimate the predictable component in the model by the model predictability (MOP) using the so called 
perfect model approach (e.g., Weisheimer et al., 2019). We first choose a single ensemble member as a sub-
stitute for the verifying analysis and calculate the ensemble mean over the remaining reduced 99-member 
ensemble. The correlation between the reduced ensemble mean and the substitute for the verifying analysis 
yields one sample of the MOP. This process is repeated for every ensemble member. The mean over these 
samples is then used to estimate the mean MOP (e.g., Ehsan et al., 2013; Kumar et al., 2014).

2.5. Calculation of the RPC for Smaller Ensemble Sizes

In order to investigate the dependency of the SNP on the number of ensemble members we also select 
reduced ensembles from the full 100-member ensemble, according to the following procedure: First, a ran-
dom permutation of the full ensemble is generated. The first ensemble member in this permutation is con-
sidered to be the substitute for the verifying analysis. Subsequently, ensemble mean predictions of different 
ensemble sizes are generated by iterative averaging over the remaining ensemble members: The second 
ensemble member in this specific permutation is gives one possibility of a 1-member ensemble, while the 
average over the second and third ensemble member gives one possibility of a 2-member ensemble and so 
forth. The correlation of the ensemble mean prediction for every ensemble size with the verifying analysis 
(substitute of the verifying analysis) then yields one sample for the ACP (MOP). This process is repeated 
100 times starting each time with a different permutation and the mean over all samples is then used to 
calculate the mean ACP and MOP.

2.6. Selection of Representative Experiments

When we conduct multiple hindcast experiments with different randomly chosen initial conditions, we 
select one experiment whose ACP as well as RPC are close to their corresponding mean values over all 
hindcast experiments. This selection is done by first normalizing the ACP as well as the RPC over all 
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hindcast-experiments and then calculating the root mean square (RMS) of the normalized ACP and RPC 
index. The hindcast experiment with the smallest RMS-value is considered to be representative of the av-
erage behavior.

3. Results and Discussion
3.1. Dependency of Reliability in Seasonal Predictions on Initial Ensemble Spread and 
Observational Uncertainty

We first analyze the SNP for seasonal predictions of the x-component in the Lorenz 1963 Model with a lead-
time of 1 month for the equal initial spread experiments. Since the predictability in the Lorenz 1963 System 
depends on the position of the initial state on the Lorenz Attractor (e.g., Huai et al., 2017), estimates of ACP 
and MOP are also subject to uncertainty related to the position of the initial states chosen. Therefore, both 
ACP, as well as RPC, exhibit variability across the 100 different hindcast experiments with the same gener-
al model setup but different initial conditions (Figure 2a). Our analysis shows that the sample mean ACP 
over all 100 hindcast experiments in the equal initial ensemble spread set amounts to 0.515 ± 0.008, which 
is comparable to the hindcast skill in a typical seasonal forecast system for the winter NAO (e.g., Dobrynin 
et al., 2018; Baker et al., 2018; Scaife et al., 2014). The distribution of the RPC over all 100 equal initial spread 
hindcast experiments exhibits a peak around the value of one (Figure 2a) and the sample mean RPC amounts 
to 0.985 ± 0.013, which is close to the perfect reliable case for which the RPC is expected to be equal to one. 
We then select the one out of the 100 hindcast experiments (Figure 2a), which is representative of the average 
behavior (Section 2.6). This representative experiment is further analyzed for the ACP as well as MOP at differ-
ent sizes of the ensemble, allowing us to investigate the uncertainty associated with the selection of ensemble 
members independent of the uncertainty associated with the position of the initial states. Our results show 
that independent of the ensemble size the mean ACP is within the interquartile range of the MOP for different 
permutations of the ensemble and therefore ACP and MOP are found to be almost equal (Figure 2b).

These results obtained in our equal initial spread experiment set indicate that, while individual hindcast 
experiments might be overconfident (RPC < 1) or underconfident (RPC > 1) simply by chance, the aver-
age of the RPC over all hindcast experiment appears to be close to reliable (RPC = 1). This finding is also 
independent of the ensemble size and robust with respect to random permutations of the ensemble for a 
representative hindcast experiment. In comparison, the results of a similar analysis for seasonal predictions 
of the NAO in a comprehensive ESM (Scaife & Smith, 2018) reports values for the RPC larger than two. 
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Figure 2. (a) ACP against RPC for 100 seasonal hindcast experiments at 1 month lead-time with the same model setup 
and equal initial ensemble spread and observational spread but different initial conditions. The horizontal (vertical) 
dashed line indicates the mean of the RPC (ACP) over all hindcast experiments. (b) Mean ACP (black line) and Mean 
MOP (blue line) in dependence of the number of ensemble members used for the prediction. Means are taken over 
100 random permutations of the ensemble. The dark shading indicates the interquartile range, while the light shading 
indicates the minimum and maximum over all permutations.
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Therefore, if the model is perfect and the initial ensemble spread represents the observational spread, the 
conceptual framework does not show the SNP.

The previous result raises the question whether this overall statement about the occurrence of the SNP 
in our conceptual framework changes if the initial ensemble spread and the observational spread are not 
equal. To test whether this is the case, we analyze the seasonal forecasts of the x-component for the high 
initial spread experiment set and low initial spread experiment set.

In the case of low initial spread (Figure 3a), the sample mean ACP (RPC) over all 100 hindcast experiments 
amounts to 0.431 ± 0.009 (0.584 ± 0.012). The case for a reliable forecast (RPC = 1) is not included in the 
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Figure 3. (a and c) ACP against RPC for 100 seasonal hindcast experiments in the low (high) initial spread case, with 
the same model setup but different initial conditions (lower panel). The horizontal (vertical) dashed line indicates the 
mean of the RPC (ACP). Histogram of the RPC (upper panel). (b and d) Mean ACP (black line) and Mean MOP (blue 
line) in dependence of the number of ensemble members for different sizes of the ensemble for one representative 
hindcast experiment in the Low (High) Ensemble Spread Set. Means are taken over 100 random permutations of the 
ensemble as described in Section 2.4. The dark shadings in (b and d) indicate the interquartile range, while the light 
shading indicates the minimum and maximum over 100 random permutations of the ensemble. (e) RPC in dependence 
of the ratio of initial ensemble spread to observational spread for 501 different hindcast experiments.
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sample mean RPC, not even in the extremes of the distribution (Figure 3a). For the representative exper-
iment (Section 2.6), the mean MOP exceeds the mean ACP independent of the ensemble size (Figure 3b). 
Furthermore, the mean ACP lies outside the range of the MOP acquired by random permutations of the 
ensemble. The ensemble appears to be overconfident.

In contrast, seasonal forecasts in the high initial spread case exhibit a sample mean ACP (RPC) of 
1.369 ± 0.008 (0.315 ± 0.038) and RPC = 1 is only just included in the extremes of the distribution. It is 
worth noting that the ACP, as well as the mean RPC found in this study for the high initial spread case, are 
lower than the ones found in seasonal predictions of the winter NAO in Scaife and Smith (2018). However, 
the investigated GloSea5 system (MacLachlan et al., 2014) belongs to the systems with the highest reported 
skill and the results of Baker et al. (2018) suggest that systems with higher skill exhibit higher values of the 
RPC.

The analysis of the representative experiment (Section 2.6) in the high initial spread set shows that the mean 
ACP exceeds the mean MOP independent of the ensemble size (Figure 3d). For most sizes of the ensemble 
the mean ACP also exceeds the interquartile range of the MOP for different permutations of the ensemble, 
however it still lies within the range of the extremes. Compared to the equal and low initial spread sets the 
uncertainty associated with the permutation of the ensemble is highest in the case of high initial spread.

These results show that increasing (decreasing) the ratio of initial ensemble spread to observational spread 
in the initialization by one order of magnitude leads to—on average—underconfident (overconfident) hind-
casts (Figures 3a–3f), with the former resembling the situation empirically found in seasonal predictions of 
the NAO in comprehensive ESMs (e.g., Baker et al., 2018; Scaife & Smith, 2018).

Similar to the previous set of experiments, we first analyze the RPC in the incremental initial spread case 
for seasonal predictions in the Lorenz 1963 Model for each individual hindcast experiment. The analysis of 
seasonal forecasts in the incremental initial spread set shows a systematic dependency between the RPC and 
the magnitude of initial ensemble spread to observational spread (Figure 3e). A linear ordinary least square 
regression between the RPC and the decimal logarithm of the initial ensemble spread to observational 
spread reveals a statistically significant slope (p < 0.01) of 0.450 ± 0.014. This means that depending on the 
relative size of the initial ensemble spread to the observational spread the seasonal forecasts based on the 
Lorenz 1963 Model can appear to be overconfident or underconfident and in general the level of over- or 
underconfidence increases with increasing miss match between initial ensemble spread to observational 
spread. Since these results are all obtained in a perfect model framework, they suggest that probably even 
if comprehensive ESMs at the core of seasonal prediction systems were to be perfect, the same paradoxical 
result found in these systems could also be obtained simply by initializing the ensemble with a too large 
initial spread when compared to the observational spread.

3.2. Lead-Time Dependency of Statements About Over-or Underconfidence on Subseasonal 
Timescales

Using the same representative experiments chosen from the three different sets of hindcast experiments 
(low initial spread, equal initial spread, high initial spread), we further analyze the evolution of the RPC on 
monthly timescales for different sizes of the ensemble (Figures 4a–4f). In the 1st month, after initialization 
all three representative hindcast experiments exhibit values of the ACP and MOP close to one for all sizes 
of the ensemble (Figures 4a, 4c, and 4e).

In the 2nd month after initialization the difference between the experiments becomes clearly apparent 
(Figures 4b, 4d, and 4f). The representative low initial spread experiment is overconfident with the MOP 
exceeding the ACP over all sizes of the ensemble (Figure 4b). The representative equal initial spread exper-
iment is close to reliable with ACP and MOP being almost equal over all sizes of the ensemble (Figure 4d). 
The representative high initial spread experiment is underconfident with the ACP exceeding the MOP over 
all sizes of the ensemble (Figure 4f).

We investigate this time-dependency further in the incremental spread set for predictions of monthly means 
at different lead-times with 1 day increments (Figure 4g). Here, we take the absolute value of the RPC since 
for long lead-times ACP and MOP can take on opposing signs by chance leading to negative values for the 
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RPC. For lead-times up to about 1 month the different experiments with a different ratio of initial ensemble 
spread to observational show little deviations of the absolute RPC from one. It is only after this period, when 
the predictive skill has sufficiently dropped that the difference between the MOP and ACP becomes appar-
ent. Individual hindcast experiments with a too large initial ensemble spread (σe/σo > 1) are predominantly 
underconfident, while individual hindcast experiments with a too low initial ensemble spread (σe/σo < 1) 
are predominantly overconfident. On average, the RPC growths (declines) with increasing lead-time when 
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Figure 4. Mean ACP (black line) and Mean MOP (blue line) for monthly predictions for the representative experiment 
in the low ([a]: 1st month, [b] 2nd month), equal ([c]: 1st month, [d] 2nd month) and high ([e]: 1st month, [f] 
2nd month) initial spread set for different ensemble-sizes. Means are taken over 100 random permutations of the 
ensemble. The dark shadings in (a–f) indicate the interquartile range, while the light shading indicates the minimum 
and maximum over all permutations. (g) Absolute RPC for monthly predictions in dependence of the ratio of initial 
ensemble spread to observational spread and lead time for 501 different hindcast experiments. Absolute RPC values are 
smoothed using a 2-dimensional gaussian filter with a standard deviation of 5 in both dimensions.



Geophysical Research Letters

the initial ensemble spread is larger (smaller) than the observational spread until it reaches a maximum 
(minimum) shortly before the prediction skill is lost. When the prediction skill is lost, the absolute RPC 
takes on large positive numbers by construction.

Our results for the SNP on subseasonal time-scales indicate that in the 1st month after the initialization 
hindcast experiments with different ratios of initial ensemble spread to observational spread show little 
deviations of the RPC from the expected value of one. However, the only difference between these experi-
ments is their ratio of initial ensemble spread to observational spread that, even though not clearly apparent 
in the 1st month after initialization, determines when and to which degree the hindcast evolves to become 
over- or underconfident in the 2nd month.

4. Conclusion
Based on four sets of experiments using a conceptual framework for a seasonal prediction system based on 
the Lorenz, 1963 Model (Lorenz, 1963), we conclude that the SNP is not apparent if the initial ensemble 
spread represents the observational spread. However, the SNP can occur if in the process of initialization, 
the ensemble spread is overestimated compared to the observational spread. Since reference runs and fore-
cast runs are time integrations of the same model using the same parameterization, we effectively create a 
perfect model framework where uncertainties in the model formulation can be ruled out when interpreting 
these results.

Zhang and Kirtman (2019) conclude that the persistence in uninitialized simulations is weaker in models 
than in reanalysis products. According to the authors their results point toward a fundamental model prob-
lem instead of a problem in the initialization procedures, which is contrary to the present study. However, 
their analysis investigates the SNP in uninitialized ESMs, while our study investigates the SNP in an initial-
ized conceptual model and therefore both setups differ from the initialized ESMs, subject to the SNP. The 
degree to which persistence in uninitialized simulations is related to forecast skill in initialized simulations 
as well as the degree to which the results in the conceptual model are related to ESMs remains uncertain in 
both studies and we therefore find that our results are not mutually exclusive.

Our results suggest that the magnitude of the initial ensemble spread relative to the observational spread 
could be an alternative hypothesis on the origin of the SNP. Based on these results we suggest to extend the 
set of candidates being potentially responsible for the SNP and include in further investigations of the SNP 
also an analysis of how well the initial ensemble spread actually represents the observational uncertainty. 
While it would be clearly desirable to conduct such a study in comprehensive ESMs, such studies will in-
evitable face challenges such as how to quantify the observational uncertainty as well as how to separate 
the effect of initial ensemble spread from other effects occurring in comprehensive models. Nevertheless, 
our results indicate that despite these challenges further investigations in comprehensive ESMs might be 
worthwhile.

Data Availability Statement
The code used to generate and analyze the data as well as to create all figures has been made available 
(BjoernMayer92, 2020). The original data generated for this study as well as the code has also been archived 
in the Climate and Environmental Retrieval and Archive (CERA) (https://cera-www.dkrz.de/WDCC/ui/
cerasearch/entry?acronym=DKRZ_LTA_1075_ds00003)
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