28 research outputs found
RXTE observations of the dipping low-mass X-ray binary 4U 1624-49
We analyse ~ 360 ks of archival data from the Rossi X-Ray Timing Explorer
(RXTE) of the 21 hr orbital period dipping low-mass X-ray binary 4U 1624-49. We
find that outside the dips the tracks in the colour-colour and
hardness-intensity diagrams (CDs and HIDs) are reminiscent of those of atoll
sources in the middle and upper parts of the banana branch. The tracks show
secular shifts up to ~ 10%. We study the power spectrum of 4U 1624-49 as a
function of the position in the CD. This is the first time power spectra of
this source are presented. No quasi-periodic oscillations (QPOs) are found. The
power spectra are dominated by very low frequency noise (VLFN), characteristic
for atoll sources in the banana state, and band limited noise (BLN) which is
not reliably detected but may, uncharacteristically, strengthen and increase in
frequency with spectral hardness. The VLFN fits to a power law, which becomes
steeper when the source moves to the harder part of the CD. We conclude that 4U
1624-49 is an atoll source which in our observations is in the upper banana
branch. Combining this with the high (0.5-0.7 L_Edd) luminosity, the long-term
flux stability of the source as seen with the RXTE All-Sky Monitor (ASM), and
with the fact that it is an X-ray dip source, we conclude that 4U 1624-49 is
most likely a GX atoll source such as GX 3+1 and GX 9+9, but seen edge on.Comment: 8 pages, 5 figures, 2 tables, accepted for publication in A&A. This
version: a few typos correcte
The Network Analysis of Urban Streets: A Primal Approach
The network metaphor in the analysis of urban and territorial cases has a
long tradition especially in transportation/land-use planning and economic
geography. More recently, urban design has brought its contribution by means of
the "space syntax" methodology. All these approaches, though under different
terms like accessibility, proximity, integration,connectivity, cost or effort,
focus on the idea that some places (or streets) are more important than others
because they are more central. The study of centrality in complex
systems,however, originated in other scientific areas, namely in structural
sociology, well before its use in urban studies; moreover, as a structural
property of the system, centrality has never been extensively investigated
metrically in geographic networks as it has been topologically in a wide range
of other relational networks like social, biological or technological. After
two previous works on some structural properties of the dual and primal graph
representations of urban street networks (Porta et al. cond-mat/0411241;
Crucitti et al. physics/0504163), in this paper we provide an in-depth
investigation of centrality in the primal approach as compared to the dual one,
with a special focus on potentials for urban design.Comment: 19 page, 4 figures. Paper related to the paper "The Network Analysis
of Urban Streets: A Dual Approach" cond-mat/041124
Wind modelling of very massive stars up to 300 solar masses
Some studies have claimed a universal stellar upper-mass limit of 150 Msun. A
factor that is often overlooked is that there might be a difference between the
current and initial masses of the most massive stars, as a result of mass loss.
We present Monte Carlo mass-loss predictions for very massive stars in the
range 40-300 Msun, with large luminosities and Eddington factors Gamma. Using
our new dynamical approach, we find an upturn in the mass-loss vs. Gamma
dependence, at the point where the winds become optically thick. This coincides
with the location where wind efficiency numbers surpass the single-scattering
limit of Eta = 1, reaching values up to Eta = 2.5. Our modelling suggests a
transition from common O-type winds to Wolf-Rayet characteristics at the point
where the winds become optically thick. This transitional behaviour is also
revealed with respect to the wind acceleration parameter beta, which starts at
values below 1 for the optically thin O-stars, and naturally reaches values as
high as 1.5-2 for the optically thick Wolf-Rayet models. An additional finding
concerns the transition in spectral morphology of the Of and WN characteristic
He II line at 4686 Angstrom. When we express our mass-loss predictions as a
function of the electron scattering Gamma_e (=L/M) only, we obtain a mass-loss
Gamma dependence that is consistent with a previously reported power-law Mdot
propto Gamma^5 (Vink 2006) that was based on our semi-empirical modelling
approach. When we express Mdot in terms of both Gamma and stellar mass, we find
Mdot propto M^0.8 Gamma^4.8 for our high Gamma models. Finally, we confirm that
the Gamma-effect on the mass-loss predictions is much stronger than that of an
increased helium abundance, calling for a fundamental revision in the way mass
loss is incorporated in evolutionary models of the most massive stars.Comment: minor language changes (Astronomy & Astrophysics in press - 11 pages,
10 figures
Networks in Archaeology: Phenomena, Abstraction, Representation
The application of method and theory from network science to archaeology has dramatically increased over the last decade. In this article, we document this growth over time, discuss several of the important concepts that are used in the application of network approaches to archaeology, and introduce the other articles in this special issue on networks in archaeology. We argue that the suitability and contribution of network science techniques within particular archaeological research contexts can be usefully explored by scrutinizing the past phenomena under study, how these are abstracted into concepts, and how these in turn are represented as network data. For this reason, each of the articles in this special issue is discussed in terms of the phenomena that they seek to address, the abstraction in terms of concepts that they use to study connectivity, and the representations of network data that they employ in their analyses. The approaches currently being used are diverse and interdisciplinary, which we think are evidence of a healthy exploratory stage in the application of network science in archaeology. To facilitate further innovation, application, and collaboration, we also provide a glossary of terms that are currently being used in network science and especially those in the applications to archaeological case studies
An Analysis of the Abstracts Presented at the Annual Meetings of the Society for Neuroscience from 2001 to 2006
Annual meeting abstracts published by scientific societies often contain rich arrays of information that can be computationally mined and distilled to elucidate the state and dynamics of the subject field. We extracted and processed abstract data from the Society for Neuroscience (SFN) annual meeting abstracts during the period 2001–2006 in order to gain an objective view of contemporary neuroscience. An important first step in the process was the application of data cleaning and disambiguation methods to construct a unified database, since the data were too noisy to be of full utility in the raw form initially available. Using natural language processing, text mining, and other data analysis techniques, we then examined the demographics and structure of the scientific collaboration network, the dynamics of the field over time, major research trends, and the structure of the sources of research funding. Some interesting findings include a high geographical concentration of neuroscience research in the north eastern United States, a surprisingly large transient population (66% of the authors appear in only one out of the six studied years), the central role played by the study of neurodegenerative disorders in the neuroscience community, and an apparent growth of behavioral/systems neuroscience with a corresponding shrinkage of cellular/molecular neuroscience over the six year period. The results from this work will prove useful for scientists, policy makers, and funding agencies seeking to gain a complete and unbiased picture of the community structure and body of knowledge encapsulated by a specific scientific domain