65 research outputs found

    Characterization of users of remotely-sensed data in the Alabama coastal zone

    Get PDF
    Federal, State, local, universities and private companies were polled to determine their needs for remote sensing data. A total of 62 users were polled. Poll results are given in tables. A comprehensive research program was developed to satisfy user needs, and is examined for the disciplines of Geology, Water Resources, Archaeology, Geography, and Conservation. An investigation of silt plume discharge from Mobile Bay is also examined. Sample poll forms used in the surveys are shown

    Examining Landscape Factors Influencing Relative Distribution of Mosquito Genera and Frequency of Virus Infection

    Get PDF
    Mosquito-borne infections cause some of the most debilitating human diseases, including yellow fever and malaria, yet we lack an understanding of how disease risk scales with human-driven habitat changes. We present an approach to study variation in mosquito distribution and concomitant viral infections on the landscape level. In a pilot study we analyzed mosquito distribution along a 10-km transect of a West African rainforest area, which included primary forest, secondary forest, plantations, and human settlements. Variation was observed in the abundance of Anopheles, Aedes,Culex, and Uranotaenia mosquitoes between the different habitat types. Screening of trapped mosquitoes from the different habitats led to the isolation of five uncharacterized viruses of the families Bunyaviridae, Coronaviridae, Flaviviridae, and Rhabdoviridae, as well as an unclassified virus. Polymerase chain reaction screening for these five viruses in individual mosquitoes indicated a trend toward infection with specific viruses in specific mosquito genera that differed by habitat. Based on these initial analyses, we believe that further work is indicated to investigate the impact of anthropogenic landscape changes on mosquito distribution and accompanying arbovirus infection

    Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus

    Get PDF
    The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations

    The Neglected Tropical Diseases of Latin America and the Caribbean: A Review of Disease Burden and Distribution and a Roadmap for Control and Elimination

    Get PDF
    The neglected tropical diseases (NTDs) represent some of the most common infections of the poorest people living in the Latin American and Caribbean region (LAC). Because they primarily afflict the disenfranchised poor as well as selected indigenous populations and people of African descent, the NTDs in LAC are largely forgotten diseases even though their collective disease burden may exceed better known conditions such as of HIV/AIDS, tuberculosis, or malaria. Based on their prevalence and healthy life years lost from disability, hookworm infection, other soil-transmitted helminth infections, and Chagas disease are the most important NTDs in LAC, followed by dengue, schistosomiasis, leishmaniasis, trachoma, leprosy, and lymphatic filariasis. On the other hand, for some important NTDs, such as leptospirosis and cysticercosis, complete disease burden estimates are not available. The NTDs in LAC geographically concentrate in 11 different sub-regions, each with a distinctive human and environmental ecology. In the coming years, schistosomiasis could be eliminated in the Caribbean and transmission of lymphatic filariasis and onchocerciasis could be eliminated in Latin America. However, the highest disease burden NTDs, such as Chagas disease, soil-transmitted helminth infections, and hookworm and schistosomiasis co-infections, may first require scale-up of existing resources or the development of new control tools in order to achieve control or elimination. Ultimately, the roadmap for the control and elimination of the more widespread NTDs will require an inter-sectoral approach that bridges public health, social services, and environmental interventions
    corecore