830 research outputs found

    Young Globular Clusters and Dwarf Spheroidals

    Get PDF
    Most of the globular clusters in the main body of the Galactic halo were formed almost simultaneously. However, globular cluster formation in dwarf spheroidal galaxies appears to have extended over a significant fraction of a Hubble time. This suggests that the factors which suppressed late-time formation of globulars in the main body of the Galactic halo were not operative in dwarf spheroidal galaxies. Possibly the presence of significant numbers of ``young'' globulars at R_{GC} > 15 kpc can be accounted for by the assumption that many of these objects were formed in Sagittarius-like (but not Fornax-like) dwarf spheroidal galaxies, that were subsequently destroyed by Galactic tidal forces. It would be of interest to search for low-luminosity remnants of parental dwarf spheroidals around the ``young'' globulars Eridanus, Palomar 1, 3, 14, and Terzan 7. Furthermore multi-color photometry could be used to search for the remnants of the super-associations, within which outer halo globular clusters originally formed. Such envelopes are expected to have been tidally stripped from globulars in the inner halo.Comment: 18 pages, with 2 figures, in LaTeX format; to appear in the Astrophysical Journal in February 200

    Investigation of the New Local Group Galaxy VV 124

    Full text link
    We present the results of our stellar photometry and spectroscopy for the new Local Group galaxy VV 124 (UGC 4879) obtained with the 6-m BTA telescope. The presence of a few bright supergiants in the galaxy indicates that the current star formation process is weak. The apparent distribution of stars with different ages in VV 124 does not differ from the analogous distributions of stars in irregular galaxies, but the ratio of the numbers of young and old stars indicates that VV 124 belongs to the rare Irr/Sph type of galaxies. The old stars (red giants) form the most extended structure, a thick disk with an exponential decrease in the star number density to the edge. Definitely, the young population unresolvable in images makes a great contribution to the background emission from the central galactic regions. The presence of young stars is also confirmed by the [O III] emission line visible in the spectra that belongs to extensive diffuse galactic regions. The mean radial velocity of several components (two bright supergiants, the unresolvable stellar population, and the diffuse gas) is v_h = -70+/-15 km/s and the velocity with which VV 124 falls into the Local Group is v_LG = -12+/-15 km/s. We confirm the distance to the galaxy D = 1.1+/-0.1 Mpc and the metallicity of red giants ([Fe/H] = -1.37) found by Kopylov et al. (2008).VV 124 is located on the periphery of the Local Group approximately at the same distance from M 31 and our Galaxy and is isolated from other galaxies. The galaxy LeoA nearest to it is 0.5 Mpc away.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy Letters (2010, Vol. 36, No. 5, pp. 309-318

    Shape Isomerism at N = 40: Discovery of a Proton Intruder in 67Co

    Full text link
    The nuclear structure of 67Co has been investigated through 67Fe beta-decay. The 67Fe isotopes were produced at the LISOL facility in proton-induced fission of 238U and selected using resonant laser ionization combined with mass separation. The application of a new correlation technique unambiguously revealed a 496(33) ms isomeric state in 67Co at an unexpected low energy of 492 keV. A 67Co level scheme has been deduced. Proposed spin and parities suggest a spherical (7/2-) 67Co ground state and a deformed first excited (1/2-) state at 492 keV, interpreted as a proton 1p-2h prolate intruder state.Comment: 4 pages, 5 figures, preprint submitted to Physical Review Letter

    HV 11423: The Coolest Supergiant in the SMC

    Get PDF
    We call attention to the fact that one of the brightest red supergiants in the SMC has recently changed its spectral type from K0-1 I (December 2004) to M4 I (December 2005) and back to K0-1 I (September 2006). An archival spectrum from the Very Large Telescope reveals that the star was even cooler (M4.5-M5 I) in December 2001. By contrast, the star was observed to be an M0 I in both October 1978 and October 1979. The M4-5 I spectral types is by far the latest type seen for an SMC supergiant, and its temperature in that state places it well beyond the Hayashi limit into a region of the H-R diagram where the star should not be in hydrostatic equilibrium. The star is variable by nearly 2 mag in V, but essentially constant in K. Our modeling of its spectral energy distribution shows that the visual extinction has varied during this time, but that the star has remained essentially constant in bolometric luminosity. We suggest that the star is currently undergoing a period of intense instability, with its effective temperature changing from 4300 K to 3300 K on the time-scale of months. It has one of the highest 12-micron fluxes of any RSG in the SMC, and we suggest that the variability at V is due primarily to changes in effective temperature, and secondly, due to changes in the local extinction due to creation and dissipation of circumstellar dust. We speculate that the star may be nearing the end of its life.Comment: Accepted by the Astrophysical Journa

    The Anisotropic Distribution of M 31 Satellite Galaxies: A Polar Great Plane of Early-Type Companions

    Full text link
    The highly anisotropic distribution and apparent alignment of the Galactic satellites in polar great planes begs the question how common such distributions are. The satellite system of M31 is the only nearby system for which we currently have sufficiently accurate distances to study the three-dimensional satellite distribution. We present the spatial distribution of the 15 presently known M31 companions in a coordinate system centered on M31 and aligned with its disk. Through a detailed statistical analysis we show that the full satellite sample describes a plane that is inclined by -56 deg with respect to the poles of M31 and that has an r.m.s. height of 100 kpc. With 88% the statistical significance of this plane is low and it is unlikely to have a physical meaning. The great stellar stream found near Andromeda is inclined to this plane by 7 deg. There is little evidence for a Holmberg effect. If we confine our analysis to early-type dwarfs, we find a best-fit polar plane within 5 deg to 7 deg from the pole of M31. This polar great plane has a statistical significance of 99.3% and includes all dSphs (except for And II), M32, NGC 147, and PegDIG. The r.m.s. distance of these galaxies from the polar plane is 16 kpc. The nearby spiral M33 has a distance of only about 3 kpc from this plane, which points toward the M81 group. We discuss the anisotropic distribution of M31's early-type companions in the framework of three scenarios, namely as remnants of the break-up of a larger progenitor, as tracer of a prolate dark matter halo, and as tracer of collapse along large-scale filaments. (Abridged)Comment: 14 pages, 5 figures, accepted for publication in the Astronomical Journa

    The distances of short-hard GRBs and the SGR connection

    Full text link
    We present a search for nearby (D<100 Mpc) galaxies in the error boxes of six well-localized short-hard gamma-ray bursts (GRBs). None of the six error boxes reveals the presence of a plausible nearby host galaxy. This allows us to set lower limits on the distances and, hence, the isotropic-equivalent energy of these GRBs. Our lower limits are around 1×10491 \times 10^{49} erg (at 2σ2\sigma confidence level); as a consequence, some of the short-hard GRBs we examine would have been detected by BATSE out to distances greater than 1 Gpc and therefore constitute a bona fide cosmological population. Our search is partially motivated by the December 27, 2004 hypergiant flare from SGR 1806-20, and the intriguing possibility that short-hard GRBs are extragalactic events of a similar nature. Such events would be detectable with BATSE to a distance of \~50 Mpc, and their detection rate should be comparable to the actual BATSE detection rate of short-hard GRBs. The failure of our search, by contrast, suggests that such flares constitute less than 15% of the short-hard GRBs (<40% at 95% confidence). We discuss possible resolutions of this discrepancy.Comment: Enlarged sample of bursts; ApJ in pres

    Explicit Kundt type II and N solutions as gravitational waves in various type D and O universes

    Get PDF
    A particular yet large class of non-diverging solutions which admits a cosmological constant, electromagnetic field, pure radiation and/or general non-null matter component is explicitly presented. These spacetimes represent exact gravitational waves of arbitrary profiles which propagate in background universes such as Minkowski, conformally flat (anti-)de Sitter, Edgar-Ludwig, Bertotti-Robinson, and type D (anti-)Nariai or Plebanski-Hacyan spaces, and their generalizations. All possibilities are discussed and are interpreted using a unifying simple metric form. Sandwich and impulsive waves propagating in the above background spaces with different geometries and matter content can easily be constructed. New solutions are identified, e.g. type D pure radiation or explicit type II electrovacuum waves in (anti-)Nariai universe. It is also shown that, in general, there are no conformally flat Einstein-Maxwell fields with a non-vanishing cosmological constant.Comment: 17 pages, LaTeX 2e. v2: added two references concerning generalized Kerr-Schild transformations, minor changes in the tex

    Invariant construction of solutions to Einstein's field equations - LRS perfect fluids II

    Full text link
    The properties of LRS class II perfect fluid space-times are analyzed using the description of geometries in terms of the Riemann tensor and a finite number of its covariant derivatives. In this manner it is straightforward to obtain the plane and hyperbolic analogues to the spherical symmetric case. For spherically symmetric static models the set of equations is reduced to the Tolman-Oppenheimer-Volkoff equation only. Some new non-stationary and inhomogeneous solutions with shear, expansion, and acceleration of the fluid are presented. Among these are a class of temporally self-similar solutions with equation of state given by p=(γ1)μ,1<γ<2p=(\gamma-1)\mu, 1<\gamma<2, and a class of solutions characterized by σ=Θ/6\sigma=-\Theta/6. We give an example of geometry where the Riemann tensor and the Ricci rotation coefficients are not sufficient to give a complete description of the geometry. Using an extension of the method, we find the full metric in terms of curvature quantities.Comment: 24 pages, 1 figur

    Homothetic perfect fluid space-times

    Get PDF
    A brief summary of results on homotheties in General Relativity is given, including general information about space-times admitting an r-parameter group of homothetic transformations for r>2, as well as some specific results on perfect fluids. Attention is then focussed on inhomogeneous models, in particular on those with a homothetic group H4H_4 (acting multiply transitively) and H3H_3. A classification of all possible Lie algebra structures along with (local) coordinate expressions for the metric and homothetic vectors is then provided (irrespectively of the matter content), and some new perfect fluid solutions are given and briefly discussed.Comment: 27 pages, Latex file, Submitted to Class. Quantum Gra

    International Guillain-Barré Syndrome Outcome Study (IGOS): protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome

    Get PDF
    Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multi-centre cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within two weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1000 patients with a follow-up of 1-3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1400 participants from 143 active centres in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modelling, treatment effects and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS. ClinicalTrials.gov Identifier: NCT01582763
    corecore