2,174 research outputs found

    Origin of atmospheric aerosols at the Pierre Auger Observatory using backward trajectory of air masses

    Full text link
    The Pierre Auger Observatory is the largest operating cosmic ray observatory ever built. Calorimetric measurements of extensive air showers induced by cosmic rays are performed with a fluorescence detector. Thus, one of the main challenges is the monitoring of the atmosphere, both in terms of atmospheric state variables and optical properties. To better understand the atmospheric conditions, a study of air mass trajectories above the site is presented. Such a study has been done using an air-modelling program well known in atmospheric sciences. Its validity has been checked using meteorological radiosonde soundings performed at the Pierre Auger Observatory. Finally, aerosol concentration values measured by the Central Laser Facility are compared to backward trajectories.Comment: 4 pages, 6 figures -- ECRS'12 European Cosmic Ray Symposium (July, 3-7, 2012) at Moscow, Russi

    Microscopic Theory for the Markovian Decay of Magnetization Fluctuations in Nanomagnets

    Get PDF
    We present a microscopic theory for the phonon-driven decay of the magnetization fluctuations in a wide class of nanomagnets where the dominant energy is set by isotropic exchange and/or uniaxial anisotropy. Based on the Zwanzig-Mori projection formalism, the theory reveals that the magnetization fluctuations are governed by a single decay rate ωc\omega_c, which we further identify with the zero-frequency portion of the associated self-energy. This dynamical decoupling from the remaining slow degrees of freedom is attributed to a conservation law and the discreteness of the energy spectrum, and explains the omnipresent mono-exponential decay of the magnetization over several decades in time, as observed experimentally. A physically transparent analytical expression for ωc\omega_c is derived which highlights the three specific mechanisms of the slowing down effect which are known so far in nanomagnets.Comment: 7 page

    Transport Coefficients of Non-Newtonian Fluid and Causal Dissipative Hydrodynamics

    Full text link
    A new formula to calculate the transport coefficients of the causal dissipative hydrodynamics is derived by using the projection operator method (Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This is an extension of the Green-Kubo-Nakano (GKN) formula to the case of non-Newtonian fluids, which is the essential factor to preserve the relativistic causality in relativistic dissipative hydrodynamics. This formula is the generalization of the GKN formula in the sense that it can reproduce the GKN formula in a certain limit. In this work, we extend the previous work so as to apply to more general situations.Comment: 15 pages, no figure. Discussions are added in the concluding remarks. Accepted for publication in Phys. Rev.

    Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV

    Get PDF
    We describe a new search for diffuse ultrahigh energy gamma-ray emission associated with molecular clouds in the galactic disk. The Chicago Air Shower Array (CASA), operating in coincidence with the Michigan muon array (MIA), has recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995. We search for gamma rays based upon the muon content of air showers arriving from the direction of the galactic plane. We find no significant evidence for diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90% confidence limit) from the galactic plane region: (50 degrees < l < 200 degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on models for emission from molecular clouds in the galaxy. We rule out significant spectral hardening in the outer galaxy, and conclude that emission from the plane at these energies is likely to be dominated by the decay of neutral pions resulting from cosmic rays interactions with passive target gas molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3 Postscript figure

    Atmospheric Calorimetry above 1019^{19} eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory

    Full text link
    The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a calorimeter to measure extensive air-showers created by particles of astrophysical origin. Some of these particles carry joules of energy. At these extreme energies, test beams are not available in the conventional sense. Yet understanding the energy response of the observatory is important. For example, the propagation distance of the highest energy cosmic-rays through the cosmic microwave background radiation (CMBR) is predicted to be strong function of energy. This paper will discuss recently reported results from the observatory and the use of calibrated pulsed UV laser "test-beams" that simulate the optical signatures of ultra-high energy cosmic rays. The status of the much larger 200,000 km3^3 companion detector planned for the northern hemisphere will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in High Energy Physic

    Electronic thermal transport in strongly correlated multilayered nanostructures

    Full text link
    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.Comment: 17 pages, 4 figures, submitted to Phys. Rev.

    Relating chaos to deterministic diffusion of a molecule adsorbed on a surface

    Full text link
    Chaotic internal degrees of freedom of a molecule can act as noise and affect the diffusion of the molecule on a substrate. A separation of time scales between the fast internal dynamics and the slow motion of the centre of mass on the substrate makes it possible to directly link chaos to diffusion. We discuss the conditions under which this is possible, and show that in simple atomistic models with pair-wise harmonic potentials, strong chaos can arise through the geometry. Using molecular-dynamics simulations, we demonstrate that a realistic model of benzene is indeed chaotic, and that the internal chaos affects the diffusion on a graphite substrate

    Atmospheric aerosols at the Pierre Auger Observatory and environmental implications

    Full text link
    The Pierre Auger Observatory detects the highest energy cosmic rays. Calorimetric measurements of extensive air showers induced by cosmic rays are performed with a fluorescence detector. Thus, one of the main challenges is the atmospheric monitoring, especially for aerosols in suspension in the atmosphere. Several methods are described which have been developed to measure the aerosol optical depth profile and aerosol phase function, using lasers and other light sources as recorded by the fluorescence detector. The origin of atmospheric aerosols traveling through the Auger site is also presented, highlighting the effect of surrounding areas to atmospheric properties. In the aim to extend the Pierre Auger Observatory to an atmospheric research platform, a discussion about a collaborative project is presented.Comment: Regular Article, 16 pages, 12 figure

    The Central Laser Facility at the Pierre Auger Observatory

    Full text link
    The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Auger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a "test beam" to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
    corecore