We present a microscopic theory for the phonon-driven decay of the
magnetization fluctuations in a wide class of nanomagnets where the dominant
energy is set by isotropic exchange and/or uniaxial anisotropy. Based on the
Zwanzig-Mori projection formalism, the theory reveals that the magnetization
fluctuations are governed by a single decay rate ωc, which we further
identify with the zero-frequency portion of the associated self-energy. This
dynamical decoupling from the remaining slow degrees of freedom is attributed
to a conservation law and the discreteness of the energy spectrum, and explains
the omnipresent mono-exponential decay of the magnetization over several
decades in time, as observed experimentally. A physically transparent
analytical expression for ωc is derived which highlights the three
specific mechanisms of the slowing down effect which are known so far in
nanomagnets.Comment: 7 page