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We present a microscopic theory for the phonon-driven decay of the magnetization fluctuations
in a wide class of nanomagnets where the dominant energy is set by isotropic exchange and/or
uniaxial anisotropy. Based on the Zwanzig-Mori projection formalism, the theory reveals that the
magnetization fluctuations are governed by a single decay rate ωc, which we further identify with the
zero-frequency portion of the associated self-energy. This dynamical decoupling from the remaining
slow degrees of freedom is attributed to a conservation law and the discreteness of the energy
spectrum, and explains the omnipresent mono-exponential decay of the magnetization over several
decades in time, as observed experimentally. A physically transparent analytical expression for ωc is
derived which highlights the three specific mechanisms of the slowing down effect which are known
so far in nanomagnets.

PACS numbers: 75.50.Xx, 75.75.+a, 76.60.Es

I. INTRODUCTION

Over the past two decades there has been an intense
theoretical and experimental interest in the field of molec-
ular nanomagnets1,2 in view of their importance in the
general context of quantum magnetism but also for po-
tential applications, e.g. in quantum computing3,4, mem-
ory storage5, and magnetic imaging6. The dominant en-
ergy in these “zero-dimensional” magnets is set by in-
tramolecular isotropic exchange interactions and/or easy-
axis anisotropy. Two of the most central motifs in this re-
search field have been2 the fact that the decay of the equi-
librium fluctuations J(t) of the total magnetization Sz is
characterized by a single correlation frequency parame-
ter ωc (or inverse decay time 1/τc) over several decades

in time, and the experimental manifestation of a dra-
matic slowing down of ωc which establishes already from
relatively high temperatures T .

The correlation frequency parameter is a quantity of
broad experimental relevance and of great theoretical
value. For instance, according to linear response theory
and the fluctuation-dissipation theorem, ωc is probed by
ac (longitudinal) susceptibility and magnetization relax-
ation measurements. It may also be measured directly
by Electron Spin Resonance7 since ωc is the electronic
spin-lattice relaxation rate (1/T1)el. Moreover, if ωc is in
the regime of the nuclear Larmor frequency ωL, then it
can be indirectly probed by Nuclear Magnetic Resonance
(NMR) as in Antiferromagnetic Rings8,9,10. Similarly,
ωc is also of relevance in Muon11 and Mössbauer12 spec-
troscopies. Previous theoretical studies of ωc

2,13,14,15,16

are based on the Master Equation (ME) which embodies
the coupled dynamics of the full set of populations pl of
the various eigenstates |l〉 of the isolated spin Hamilto-
nian Hs. In this approach, one first evaluates the various
phonon-driven quantum-mechanical transition rates Wll′

from |l〉 to |l′〉 and then forms and diagonalizes numeri-
cally the associated relaxation matrix R. This procedure

gives a multi-exponential decay. To account for the ob-
served behavior it is then sometimes argued2,14,15,16 that
ωc can be assigned to the lowest eigenvalue (or decay
rate) λ0 of R. Despite being physically quite plausible,
such a hypothesis alone does not guarantee that λ0 cor-
responds to the decay of the observable of interest (here
Sz), since other observables (such as the magnetic energy
Hs) decay slowly as well. As shown by Santini et al.9,
a full numerical treatment of this problem based on the
ME approach requires also the calculation of the weight
of each eigenvalue of R in J(t). In agreement with ex-
perimental data, the ME calculations of Santini et al.9

showed that J(t) is dominated by a single eigenvalue and
which, indeed, does not always equal λ0. A principal the-
oretical question however still remains as to whether or
not there is a physical reason which necessitates the ob-
served dynamical decoupling of Sz over several decades
in time and in a large class of magnetic molecule clusters.

In this article we put forward a theoretical framework
which focuses right from the start on the principal quan-
tity of interest, namely the fluctuations J(t) of the total
magnetization Sz. This approach reveals immediately
the physical origin of the observed Markovian decay: The
self-energy Σ(t) of the magnetization embodies fluctu-
ations of non-conserved observables which decay much
faster than Sz. It is shown that this separation of time
scales is guaranteed by the discreteness of the magnetic
energy spectrum. The identification of the precise eigen-
value of R which governs the decay of J(t) with the zero-
frequency portion of the self-energy and the derivation of
an analytical expression for it (cf. Eq. (27) or (31)) in
lowest order in the magnetoelastic coupling is a second
achievement of this approach. This expression is an op-
timal starting point for direct and quantitative compar-
ison with experimental data and thus allows to explore
the specific low-energy phonon modes which are involved
in the magnetoelastic process in all nanomagnets, an is-
sue which is of broad interest and is currently largely
unexplored. At the same time, this expression readily
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demonstrates the three specific mechanisms of the slow-
ing down effect which are known so far in nanomagnets:
(i) the existence of an easy-axis anisotropy, (ii) the in-
creasingly gapped character of the spectrum at low en-
ergies, and (iii) the possibility of a crossover to a critical
slowing down.

The first is present in Single Molecule Magnets
(SMM’s)2,17,18 which are perhaps the most intensively
studied nanomagnets since, apart from the above “super-
paramagnetic” behavior, they also provide a remarkable
manifestation of magnetization tunneling19. Here, the
presence of competing exchange interactions stabilizes a
ferrimagnetic ground state of a large total spin S, e.g.
S = 10 for the Mn12 and Fe8 clusters. The energy scale
within this large S manifold is set by an effective uniaxial
anisotropy −|D|S2

z , giving rise to a correspondingly large
barrier (U ≃ 62 K for Mn12 and 24.5 K for Fe8)

2,17,18 for
thermal relaxation. The relaxation time τc of Sz follows
a phenomenological Arrhenius law τc ∝ eU/kBT which
can reach values as long as 105 − 107 sec at low T . This
behavior is also revealed by complementary ac suscepti-
bility measurements2.

The second mechanism appears e.g. in Antiferromag-
netic Rings AFMR’s. These are planar ring-like magnetic
clusters comprising an even number N of spins s whereby
the dominant energy is set by the nearest-neighbor anti-
ferromagnetic (AFM) exchange J . This stabilizes a non-
magnetic S = 0 ground state separated by a spin gap
∆ ≃ 4J/N (Landé interval rule) from the lowest S = 1
excitation. Here there is no energy barrier and thus the
corresponding ωc are on a much faster scale than the ones
in SMM’s. Still, it has been found8,9,10 that ωc drops by
several (three up to five) decades as T drops below ∆/kB.
This dramatic decrease is systematically revealed by an
enhancement of the nuclear spin-lattice relaxation rate
1/T1 at T ∼ ∆/kB

8,9,10. A similar behavior of 1/T1 is
observed in other AFM clusters but also in SMM’s20. In
the latter, the analysis of 1/T1 is hindered by the NMR
wipe-out effect20.

The third mechanism of the slowing down effect
emerges in Single Chain Magnets (SCM’s)21,22,23,24,25

which comprise finite ferromagnetic chains of variant
lengths L. Here, a crossover from an activated to a criti-
cal slowing down occurs as we tend toward the T = 0
(thermodynamically) critical point, and in particular
when the correlation length ξ approaches L. Our ap-
proach accommodates such a mechanism exactly as in
critical bulk systems26 since it reveals that ωc is inversely
proportional to the isothermal magnetic susceptibility χ0

(cf. Eq. (27)).

The remainder of this article is organized as follows.
In Sec. II we describe the main terms of the spin Hamil-
tonian of the magnetic cluster and its interaction with
the host lattice which drives the relaxational dynamics.
In Sec. III A we introduce the so-called Mori correla-
tion function and express the main quantities of inter-
est in terms of it. The Zwanzig-Mori projection tech-
nique is then employed in Sec. III B in order to intro-

duce the self-energy function and highlight its major role.
A perturbative expansion of this quantity is then given
up to lowest (second) order in the magnetoelastic cou-
pling. In Sec. III C we provide a rigorous justification of
the Markov approximation based on the discreteness of
the magnetic energy spectrum. We then arrive at our
expression for the correlation frequency and provide a
qualitative analysis of the three specific mechanisms of
the slowing-down effect which are known so far in nano-
magnets. In Sec. IV we revisit the problem of nuclear
spin-lattice relaxation in AFMR’s and clarify a number
of aspects in the light of our treatment. Finally we give
a short summary and overview of our results in Sec. V.

II. HAMILTONIAN

At not too low T , and given the typical energy scale of
the magnetic excitations (a few tens of degrees Kelvin),
the decay of the electronic spin fluctuations must origi-
nate from the coupling to the deformations of the host
lattice, and in particular, the low-energy phonon modes.
The Hamiltonian of the full spin+phonon system can be
generally written as

H = Hs +Hph + V , (1)

where Hs stands for the isolated spin Hamiltonian, Hph

is the phonon energy and V denotes the relevant spin-
phonon interaction channel(s). The first is taken to in-
clude the most dominant magnetic energy terms

Hs =
∑

ij

Jijsi · sj − |D|S2
z + gµBBSz , (2)

i.e., the isotropic Heisenberg exchange interactions (lead-
ing term), a possible effective easy-axis anisotropy (sec-
ond term), and finally a Zeeman term for the coupling
between an external longitudinal (along the easy z-axis)
field B and the total magnetic moment Sz =

∑

i s
z
i . As

usually, g denotes the electronic spectroscopic factor and
µB is the Bohr magneton. In what follows, we shall de-
note by |l〉 and El the eigenstates and eigenvalues of Hs

and by Ml the corresponding eigenvalues of Sz. In our
treatment we have excluded Dzyaloshinskii-Moriya inter-
actions and transverse on-site anisotropies which are very
small (<∼ 1 K) and are relevant at ultra low temperatures
only. As we show below, the observed mono-exponential
decay of Sz can be explained by the most dominant en-
ergy terms which are included in Eq. (2).
For the magnetoelastic coupling V , we may write with-

out loss of generality

V =
∑

µ

Aµ ⊗ Bµ , (3)

where Aµ and Bµ are spin and phonon operators re-
spectively. The latter represent low-energy strain fields
probed by the electronic spin degrees of freedom. Details



3

about the origin and possible types of V are discussed
e.g. in Refs. 2,13,27,28,29. As we show below, the major
phonon quantities that govern the dissipative dynamics
of the electronic spin fluctuations are the spectral densi-
ties

Jph
µµ′(ω) ≡

∫ ∞

−∞

dt eiωt
〈

BµBµ′

(t)
〉

ph
, (4)

where the thermal average is taken over the canonical
ensemble ρph(T ) = e−βHph/Zph, Zph = Tr e−βHph .

III. MAGNETIZATION FLUCTUATIONS

In the absence of spin-phonon coupling, Sz is conserved
since [Sz,Hs] = 0. If the observables coupled to Sz

(through V) do not share this property it is physically
expected that they decay faster than Sz. This separation
of time scales is at the origin of the Markovian decay of
Sz. And such a central physical ingredient can be ex-
ploited naturally within the framework of Zwanzig-Mori
projection formalism26,30,31,32,33,34, whereby one may iso-
late the important slow degrees of freedom by appropri-
ately projecting out the remaining faster ones. To this
end, it is expedient to first express the central quantities
of interest in terms of the so-called Mori correlation func-
tion which can be readily handled with the Zwanzig-Mori
projection technique.

A. Quantities of central interest in terms of the

Mori correlation function

Let us first introduce the Mori correlation function.
We first note that any operator A can be represented
as a “state vector”

∣

∣A
)

in the Liouville space (space of
operators). A convenient choice of a scalar product in
this vector space is the so-called Mori product defined as

(

A
∣

∣B
)

≡
1

β

∫ β

0

dx
〈

A†B(ih̄x)
〉

=
〈

A† 1− e−βh̄L

βh̄L
B
〉

, (5)

where B(ih̄x) ≡ e−h̄LxB = e−xHBexH, and L = Ls +
Lph + LV ≡ L0 + LV denotes the Liouville operator. Its
action on a given operator A is defined as

iLA ≡
1

ih̄
[A,H] =

dA(t)

dt

∣

∣

∣

∣

∣

t=0

≡ Ȧ . (6)

Also, the thermal average is taken over the canonical en-
semble ρ(T ) of the full spin + phonon system

ρ(T ) = Z−1e−βH, Z = Tr e−βH (7)

where β = 1/(kBT ) denotes the inverse temperature and
kB is the Bolzmann’s constant. In what follows we as-
sume that βV ≪ 1 and thus the magnetoelastic coupling

cannot influence static properties, i.e. the canonical den-
sity matrix factorizes as

ρ(T ) ≃ ρs(T )⊗ ρph(T ) (8)

where ρph(T ) was defined previously while ρs(T ) =
e−βHs/Zs, Zs =Tre−βHs. Now, the Mori correlation
function M(t) is nothing else but the projection of the
time-evolved “state”

∣

∣δSz(t)
)

= eiLt
∣

∣δSz

)

onto
∣

∣δSz

)

, i.e.

M(t) ≡
(

δSz

∣

∣δSz(t)
)

=
〈

δSz
1− e−βh̄L

βh̄L
δSz(t)

〉

, (9)

where δSz ≡ Sz −〈Sz〉 and δSz(t) ≡ eiHt/h̄δSze
−iHt/h̄ =

eiLtδSz. The one-sided Fourier (or Laplace) transform of
M(t) reads

M(s) ≡
(

δSz

∣

∣δSz

)

s
=

∫ ∞

0

dt eist
(

δSz

∣

∣eiLtδSz

)

=
(

δSz

∣

∣

i

s+ L
δSz

)

. (10)

On the other hand, the experimentally most relevant
quantities which embody the dynamics of the magneti-
zation fluctuations are the spectral density J (ω) and the
dynamical susceptibility χ(s). The first is the Fourier
transform of the product correlation function J(t), i.e.

J (ω) ≡

∫ ∞

−∞

dt eiωt
〈

δSzδSz(t)
〉

, (11)

while the second is the one-sided Fourier transform of the
commutator correlation function

χ(s) ≡

∫ ∞

0

dt eist
〈 1

ih̄
[δSz, δSz(t)]

〉

, s = ω + iη, η > 0.

(12)
The two quantities are connected via the fluctuation dis-
sipation theorem

J (ω) =
2h̄

1− e−βh̄ω
χ′′(ω + i0+) . (13)

It is now straightforward to express the dynamical sus-
ceptibility χ(s) in terms of M(s) using their definitions

Eqs. (10) and (12), and the Kubo identity β
(

A
∣

∣Ḃ
)

=

−
〈

1
ih̄ [A

†, B]
〉

which follows from Eq. (5) by replacing B

with Ḃ and using the relation
〈

A†e−βh̄LB
〉

=
〈

BA†
〉

.
The resulting expression is

χ(s) = −β
(

δSz

∣

∣δṠz

)

s
= β

(

δSz

∣

∣

L

s+ L
δSz

)

= χ0 + iβs M(s) , (14)

where χ0 is the isothermal differential susceptibility:

χ0 ≡ β
(

δSz

∣

∣δSz

)

= β
〈

δSz
1− e−βh̄L

βh̄L
δSz

〉

= β
〈

(δSz)
2
〉

= −
1

gµB

∂〈Sz〉

∂B
. (15)

The second line follows from βL ≃ β(Ls + Lph) (since
βV ≪ 1) and h̄LsSz = [Hs, Sz] = 0.
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B. Projection method and self-energy Σ(s)

Having at hand Eqs. (14) and (13), we may now con-
centrate on the Mori correlation function which can be
easily handled within the Zwanzig-Mori formalism. The
idea is to project out from Eq. (10) fluctuations that cou-
ple to Sz through the resolvent G = i(s+L)−1. This can
be done by employing the projection operators

P =

∣

∣δSz

)(

δSz

∣

∣

(

δSz

∣

∣δSz

) , Q = 1− P , (16)

and then by decomposing G using the operator identity
(C+D)−1 = C−1−(C+D)−1DC−1, with C = s+QL, and
D = PL. After some straightforward steps we obtain

M(s) =
χ0

β

i

s+Ω+ iΣ(s)
, (17)

where we have used M(t = 0) =
(

δSz

∣

∣δSz

)

= χ0/β, and
introduced the eigenfrequency Ω and the self-energy or
memory function Σ(s) which are defined by

iΩ =
β

χ0

(

δSz

∣

∣iLδSz

)

=
β

χ0

(

Sz

∣

∣Ṡz

)

(18)

Σ(s) =
β

χ0

(

δSz

∣

∣LQ
i

s+QLQ
QL

∣

∣δSz

)

. (19)

The physical meaning of these quantities becomes trans-
parent by taking the inverse Laplace transform of
Eq. (17) which reads

d

dt
M(t) = iΩM(t)−

∫ t

0

dt′Σ(t′)M(t− t′), t ≥ 0. (20)

This justifies the origin of the terms eigenfrequency and
memory function for Ω and Σ respectively.
Equations (17), (18) and (19) are exact. All informa-

tion about the remaining fluctuations coupled to Sz has
been conveniently embedded into Σ(s). Here Ω = 0 due
to the definite time reversal signature of Sz (also due to
the Kubo identity given above). Importantly, this also

implies that Q
∣

∣Ṡz

)

= (1 − P)
∣

∣Ṡz

)

=
∣

∣Ṡz

)

, which simpli-
fies Eq. (19) to

Σ(s) =
β

χ0

(

Ṡz

∣

∣

i

s+ L

∣

∣Ṡz

)

=
β

χ0

(

Ṡz

∣

∣Ṡz

)

s
. (21)

Hence, Σ(ω + i0+) is proportional to the Mori correla-

tion function
(

Ṡz

∣

∣Ṡz

)

ω+i0+
and thus embodies the fluc-

tuations of the “flux” operator37

Ṡz =
1

ih̄

[

Sz,V
]

=
∑

µ

Fµ ⊗ Bµ , (22)

where Fµ ≡ 1
ih̄

[

Sz,A
µ
]

. For later convenience let us
write the matrix elements of these operators: Fµ

ll′ ≡

〈l|Fµ|l′〉 = i
h̄ δMl′l A

µ
ll′ , where δMl′l ≡ Ml′ −Ml.

We now employ a perturbation expansion for the eval-
uation of the self-energy Σ(ω + i0+). To this end, one
needs to expand the resolvent G = i(s + L)−1 of Eq. 21

in powers of LV . Interestingly, Ṡz is linear in V and thus
we may already obtain the lowest order effect by simply
replacing L by L0 = Ls + Lph in the denominator of

Eq. (17). To second order then,
(

Ṡz

∣

∣Ṡz

)

ω+i0+
equals to

(

Ṡz

∣

∣

i

L0 + ω + i0+

∣

∣Ṡz

)

=
(

Ṡz

∣

∣πδ
(

L0 + ω
)
∣

∣Ṡz

)

= π
eβh̄ω − 1

βh̄ω

〈

Ṡzδ
(

L0 + ω
)

Ṡz

〉

, (23)

where we have used the reality of Σ(ω+ i0+). Employing
the representation δ(L0 + ω) = (2π)−1

∫

dt eiL0t, factor-
izing eiL0t = eiLsteiLpht, and using Eq. (8) we obtain

Σ(ω+i0+) =
β

χ0

eβh̄ω − 1

2βh̄ω

∑

µµ′

∫

dω′Js
µµ′ (ω′)Jph

µµ′ (ω−ω′) ,

(24)

where Jph
µµ′ (ω) was defined previously, while Js

µµ′(ω)
stand for the isolated spectral densities of the Fµ op-
erators, i.e.

Js
µµ′ (ω) =

∫ ∞

−∞

dt eiωt
〈

FµFµ′

(t)
〉

s
, (25)

where the thermal average is taken over the canonical
ensemble ρs(T ).

C. Markovian behavior and correlation frequency

The origin of the mono-exponential decay of Sz follows
immediately from Eq. (24) and this is related to the dis-
crete character of the spectrum. The spectral densities
Js(ω′) of Fµ are peaked at the characteristic Bohr fre-
quencies ω′ = (El−El′)/h̄ of Hs. On the other hand, we
are interested in a long time regime: For all relevant ex-
perimental frequency scales (e.g. ωL in NMR) ω ∼ ωc ≪
ω′, and thus, given the extremely short phonon correla-
tion times, we may replace38 J ph(ω − ω′) ≃ Jph(−ω′),
which is equivalent with the usual Markov approxima-
tion of replacing Σ(ω + i0+) ≃ Σ(i0+) in Eq. (17). This
“memory-less” character of the self-energy means that
the fluctuations of the observables coupled to Sz (i.e.

the observables Fµ that enter in Ṡz) decay in times τ ′c
much shorter than the decay time τc = 1/ωc of M(t).
The physical origin of this separation of time scales can
be attributed to the fact that, in contrast to Fµ, Sz

is a conserved variable for the isolated magnetic clus-
ter and thus is expected to decay much slower in the
presence of the small magnetoelastic coupling. At the
same time, this separation of time scales is at the ori-
gin of the Markovian decay of Sz: As long as t ≫ τ ′c,
one may replace M(t− t′) with M(t) inside the integral
of Eq. (20) and extend the upper limit to infinity, i.e.
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d
dtM(t) ≃ −

∫∞

0 dt′Σ(t′) ·M(t) ≡ −Σ(i0+) ·M(t), which

gives39

M(t) = (χ0/β) e
−Σ(i0+)t, t ≥ 0 . (26)

We can thus identify the zero-frequency portion of the
self-energy with the correlation frequency ωc:

ωc = Σ(i0+) =
β

2χ0

∑

µµ′

∫ ∞

−∞

dω′J s
µµ′(ω′)J ph

µµ′ (−ω′).(27)

On the other hand, according to Eqs. (14) and (13), the
susceptibility and the spectral density have the familiar
Debye (or Lorentzian) form:

χ(s) = χ0
iωc

s+ iωc
(28)

J (ω) =
2h̄

1− e−βh̄ω
χ0

ωωc

ω2 + ω2
c

. (29)

Equations (27), (28) and (29) are our central results. It is
expedient to rewrite Eq. (27) in a more convenient form,
in terms of the various quantum-mechanical transition
rates Wll′ from |l〉 to |l′〉. To this end, we use the spectral

representation J s
µµ′ (ω′) = 2π

∑

ll′ PlF
µ
ll′F

µ′

l′lδ(ω
′ − ωll′),

where Pl ≡ e−βEl/Zs and Fµ
ll′ were given previously. We

find

ωc

2π
=

1

2

∑

l,l′

Pl
δM2

l′l

〈δS2
z 〉

·
[ 1

h̄2

∑

µµ′

Aµ
ll′A

µ′

l′lJ
ph
µµ′ (ωl′l)

]

. (30)

The last factor of this equation can be identified to be
the quantum-mechanical transition rate Wll′ from |l〉 to
|l′〉. We therefore obtain the convenient expression

ωc

2π
=

1

2

∑

l,l′

Pl
δM2

l′l

〈δS2
z 〉

Wll′ . (31)

We remark here that we can eliminate the factor of 1/2
appearing in the right hand sides of Eqs. (27) and (31) by
restricting the integral of (27) to positive (or negative)
frequencies only, or by constraining the sum of (31) to
run over l < l′. This is allowed by the detailed balance
condition J i

µµ′ (−ω′) = e−βh̄ω′

J i
µ′µ(ω

′) (i = s, ph) or its
equivalent form PlWll′ = Pl′Wl′l.
Let us now describe in qualitative terms the main fea-

tures of Eq. (27) or Eq. (31). According to these expres-
sions, ωc is a weighted sum over all relevant resonance
channels between the spin and the phonon system. Each
contribution enters in a transparent and physically ap-
pealing factorized form. Energy conservation is ensured
by the opposite frequency arguments in J s and J ph.
The one-phonon portion of the latter is proportional to
the number of available (i.e. thermally excited) phonons
in resonance with the electronic spin system. We also
note that it is Fµ and Bµ triggering the decay of Sz (cf.
(22)) that enter in Eq. (27). This is also reflected in
Eq. (31) by the fact that transitions between two levels

l, l′ contribute to ωc only if they differ in their magnetic
moment. More generally, each of the three known mecha-
nisms of the slowing down effect can be now associated to
one of the three major quantities appearing in Eq. (27),
namely J ph, J s and χ0. In AFMR’s (see also Sec. IV
below), it is the drastic reduction of the resonant por-
tions of the phonon spectral weight J ph as T drops be-
low the spin gap. In SMM’s on the other hand, the effect
appears already well above the typical intra-barrier ex-
citations, and thus must be attributed to selection rules
in J s which necessitate an “over the barrier” relaxation
process. Finally, the appearance of the susceptibility in
the denominator of Eq. (27) is underlying the critical
slowing down observed in SCM’s21,22,23,24,25 similarly to
bulk ferromagnets26.
We should finally note here that one may start with

the magnetic energy Hs instead of Sz and show, follow-
ing exactly the same steps as above, that this observable
decays also independently from the remaining slow de-
grees of freedom. Its corresponding decay rate ωE can be
also derived and the result is fully analogous to Eq. (31):

ωE

2π
=

1

2

∑

l,l′

Pl
δE2

l′l

〈δH2
s〉
Wll′ , (32)

where δEl′l ≡ El′ − El, 〈δH
2
s〉 = kBT

2Cm, and Cm is
the magnetic specific heat. The “magnetic energy cor-
relation frequency” ωE is of experimental relevance in
time-dependent specific heat measurements35 and is dis-
tinct from ωc. It is nevertheless expected, based on the
above discussion, that ωE also manifests a dramatic slow-
ing down similar to ωc.

IV. NUCLEAR SPIN-LATTICE RELAXATION

RATE IN AFMR’S

Here we revisit the problem of proton 1/T1 in AFMR’s
and clarify a number of aspects in the light of Eqs. (29)
and (27) or (31). Quite generally, since the proton spin
is a local probe, 1/T1 samples all (auto- and pair-) elec-
tronic spin spectral densities evaluated at ωL. Remark-
ably however, in clusters with equivalent ionic spins (such
as AFMR’s) symmetry arguments together with the fact
that ωL is much smaller than the typical Bohr frequen-
cies ωB assert that away from level crossings the relevant
terms contributing to 1/T1 are all proportional to the
spectral density of the total magnetization9,36, i.e.

1

T1
= AJ (ωL) , (33)

where the proportionality constant A embodies the spe-
cific details regarding the geometry and the strength of
the nuclear-electron hyperfine coupling10. The remaining
terms of the electronic spin spectral densities are van-
ishingly small and become relevant only at field-induced
level crossings36. For symmetric clusters then and using
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Eq. (29) (with βh̄ωL ≪ 1) we obtain

1

T1
= (2kBA)χ0T

ωc(T )

ω2
L + ωc(T )2

, (34)

which is the Lorentzian form used previously8,9.
In AFMR’s, J s(ωB)/

(

χ0T
)

does not change dras-
tically over the whole temperature range of interest.
Hence, the observed dramatic decrease of ωc and the
resulting enhancement8,9,10 of 1/T1 when ωc(T ) = ωL

(cf. Eq. (34)) stems, as mentioned above, from a dras-
tic reduction of the number of available (thermally ex-
cited) phonons which are in resonance with the magnetic
cluster. This is because on decreasing temperature the
relevant low-lying magnetic excitations are increasingly
gapped while the frequency peak of J ph(ω) shifts toward
lower ω. Eventually the phonon spectral density peak
shifts below ∆/h̄ and one-phonon processes become in-
effective in driving the electronic spin fluctuations, thus
resulting in a drastic drop of ωc. One can also explain the
observed field independence of ωc

8,9,10 at intermediate
temperatures and for B ≪ ∆/(gµB) as follows. The rel-
evant Bohr frequencies (with δMl′l 6= 0) in these temper-
ature and field regimes are ∆/h̄±ωe ωe and 2ωe (here ωe

is the electron Larmor frequency). These frequencies cor-
respond respectively to the transitions between the lowest
singlet and the first triplet excitation (with δMl′l = ±h̄)
and to transitions within the lowest triplet. The later do
not contribute appreciably since J ph(ωe) ≪ J ph(∆/h̄).
At the same time J ph(∆/h̄ ± ωe) ≃ J ph(∆/h̄) and
χ0(B) ≃ χ0(0). As a result ωc is field-independent at
intermediate temperatures and B ≪ ∆/(gµB). A field
dependence should only arise at higher fields and very
low temperatures or for clusters with small ∆.

V. SUMMARY

We have presented a microscopic theory for the om-
nipresent mono-exponential slowing down effect observed

in a wide range of molecular nanomagnets. To this end,
we first expressed the magnetization fluctuations in terms
of the associated self-energy or memory function which
embodies the fluctuations of the observables that couple
to Sz. It is then shown that the discreteness of the mag-
netic energy spectrum guarantees that the self-energy de-
cays in times much shorter than 1/ωc. This separation of
time scales results in a dynamical decoupling of the mag-
netization fluctuations and thus explains their observed
Markovian behavior. In addition, we have derived an an-
alytical expression for the correlation frequency parame-
ter ωc which embodies in a convenient factorized form all
essential ingredients. This expression highlights the three
specific mechanisms of the slowing down effect which are
known so far in nanomagnets, namely (i) the existence of
an anisotropy barrier, (ii) the increasingly gapped char-
acter of the magnetic energy spectrum at low energies,
and (iii) the possibility of a critical slowing down. In ad-
dition, this formula contains, in a convenient factorized
form, the noise spectra of the relevant low-energy strain
fields which are at present largely unexplored. Hence this
work paves the way for a more direct and quantitative
comparison with experiment and a deeper understanding
of the underlying microscopic relaxation channels present
in all nanomagnetic systems.

VI. ACKNOWLEDGMENTS

I would like to thank M. Luban, A. Läuchli,
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