744 research outputs found

    Pattern Competition in the Photorefractive Semiconductors

    Full text link
    We analytically study the photorefractive Gunn effect in n-GaAs subjected to two external laser beams which form a moving interference pattern (MIP) in the semiconductor. When the intensity of the spatially independent part of the MIP, denoted by I0I_0, is small, the system has a periodic domain train (PDT), consistent with the results of linear stability analysis. When I0I_0 is large, the space-charge field induced by the MIP will compete with the PDT and result in complex dynamics, including driven chaos via quasiperiodic route

    Dry eye disease in mice activates adaptive corneal epithelial regeneration distinct from constitutive renewal in homeostasis

    Get PDF
    Many epithelial compartments undergo constitutive renewal in homeostasis but activate unique regenerative responses following injury. The clear corneal epithelium is crucial for vision and is renewed from limbal stem cells (LSCs). Using single-cell RNA sequencing, we profiled the mouse corneal epithelium in homeostasis, aging, diabetes, and dry eye disease (DED), where tear deficiency predisposes the cornea to recurrent injury. In homeostasis, we capture the transcriptional states that accomplish continuous tissue turnover. We leverage our dataset to identify candidate genes and gene networks that characterize key stages across homeostatic renewal, including markers for LSCs. In aging and diabetes, there were only mild changes with \u3c15 dysregulated genes. The constitutive cell types that accomplish homeostatic renewal were conserved in DED but were associated with activation of cell states that comprise adaptive regeneration. We provide global markers that distinguish cell types in homeostatic renewal vs. adaptive regeneration and markers that specifically define DED-elicited proliferating and differentiating cell types. We validate that expression of SPARC, a marker of adaptive regeneration, is also induced in corneal epithelial wound healing and accelerates wound closure in a corneal epithelial cell scratch assay. Finally, we propose a classification system for LSC markers based on their expression fidelity in homeostasis and disease. This transcriptional dissection uncovers the dramatically altered transcriptional landscape of the corneal epithelium in DED, providing a framework and atlas for future study of these ocular surface stem cells in health and disease

    On conditional skewness with applications to environmental data

    Get PDF
    The statistical literature contains many univariate and multivariate skewness measures that allow two datasets to be compared, some of which are defined in terms of quantile values. In most situations, the comparison between two random vectors focuses on univariate comparisons of conditional random variables truncated in quantiles; this kind of comparison is of particular interest in the environmental sciences. In this work, we describe a new approach to comparing skewness in terms of the univariate convex transform ordering proposed by van Zwet (Convex transformations of random variables. Mathematical Centre Tracts, Amsterdam, 1964), associated with skewness as well as concentration. The key to these comparisons is the underlying dependence structure of the random vectors. Below we describe graphical tools and use several examples to illustrate these comparisons.The research of Félix Belzunce, Julio Mulero and José María Ruíz is partially funded by the Ministerio de Economía y Competitividad (Spain) under Grant MTM2012-34023-FEDER. Alfonso Suárez-Llorens acknowledges support received from the Ministerio de Economía y Competitividad (Spain) under Grant MTM2014-57559-P

    Evidence for Factorization in Three-body B --> D(*) K- K0 Decays

    Full text link
    Motivated by recent experimental results, we use a factorization approach to study the three-body B --> D(*) K- K0 decay modes. Two mechanisms are proposed for kaon pair production: current-produced (from vacuum) and transition (from B meson). The Bbar0 --> D(*)+ K- K0 decay is governed solely by the current-produced mechanism. As the kaon pair can be produced only by the vector current, the matrix element can be extracted from e+ e- --> K Kbar processes via isospin relations. The decay rates obtained this way are in good agreement with experiment. Both current-produced and transition processes contribute to B- --> D(*)0 K- K0 decays. By using QCD counting rules and the measured B- --> D(*)0 K- K0 decay rates, the measured decay spectra can be understood.Comment: 17 pages, 6 figure

    Structural insights into regulation of nuclear receptors by ligands

    Get PDF
    Nuclear receptors are DNA-binding transcription factors, the transcriptional function of many of which depends on the binding of ligands, a feature that distinguishes nuclear receptors from other transcription factors. This review will summarize recent advances in our knowledge of the interaction between selected nuclear receptors and their cognate ligands

    Finite-size scaling in silver nanowire films: design considerations for practical devices

    Get PDF
    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels

    Integrated modelling of cost-effective siting and operation of flow-control infrastructure for river ecosystem conservation

    Full text link
    Wetland and floodplain ecosystems along many regulated rivers are highly stressed, primarily due to a lack of environmental flows of appropriate magnitude, frequency, duration, and timing to support ecological functions. In the absence of increased environmental flows, the ecological health of river ecosystems can be enhanced by the operation of existing and new flow-control infrastructure (weirs and regulators) to return more natural environmental flow regimes to specific areas. However, determining the optimal investment and operation strategies over time is a complex task due to several factors including the multiple environmental values attached to wetlands, spatial and temporal heterogeneity and dependencies, nonlinearity, and time-dependent decisions. This makes for a very large number of decision variables over a long planning horizon. The focus of this paper is the development of a nonlinear integer programming model that accommodates these complexities. The mathematical objective aims to return the natural flow regime of key components of river ecosystems in terms of flood timing, flood duration, and interflood period. We applied a 2-stage recursive heuristic using tabu search to solve the model and tested it on the entire South Australian River Murray floodplain. We conclude that modern meta-heuristics can be used to solve the very complex nonlinear problems with spatial and temporal dependencies typical of environmental flow allocation in regulated river ecosystems. The model has been used to inform the investment in, and operation of, flow-control infrastructure in the South Australian River Murray.<br /
    corecore