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Abstract

The statistical literature contains many univariate and multivariate skewness mea-
sures that allow two datasets to be compared, some of which are defined in terms of
quantile values. In most situations, the comparison between two random vectors focuses
on univariate comparisons of conditional random variables truncated in quantiles; this
kind of comparison is of particular interest in the environmental sciences. In this work,
we describe a new approach to comparing skewness in terms of the univariate convex
transform ordering proposed by van Zwet (1964), associated with skewness as well as
concentration. The key to these comparisons is the underlying dependence structure
of the random vectors. Below we describe graphical tools and use several examples to
illustrate these comparisons.

Keywords: Skewness, Right-Skewed Distributions, Convex Transform Ordering, Gini,
Copula, Environmental Data.
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1 Introduction

Estimating and studying the location and variability of a dataset is sometimes supplemented
by an investigation of skewness as a measure of symmetry, or more precisely, as a measure
of a lack of symmetry. Skewness is intended to represent the departure of a density from
symmetry (or sometimes even departure from normality), whereby one tail of the density is
more “stretched out” than the other. Although symmetry is natural for distributions with
support (−∞,∞), the notion of asymmetry also has a place in describing distributions with
support [0,∞). For instance, environmental data are typically skewed, meaning that datasets
are not symmetric around the mean or median and frequently have extreme values that stretch
out more in one direction.

The study of skewed distributions has long attracted the attention of statisticians. Pear-
son (1895) considered the gamma distribution as a model for non-symmetric data and an
alternative to the usual normal distribution. Pareto (1897) also considered a skewed distribu-
tion for the modelling of income distributions. Although skewness can be studied graphically
through the box-whisker plot of a univariate dataset, many coefficients have been considered
to measure it. We recall some of these in what follows.

Specifically, let X be a random variable with distribution function FX and let F−1X (p) =
inf{x : FX(x) ≥ p}, for p ∈ (0, 1), denote the corresponding generalized quantile function.
In basic statistics, we usually measure the skewness of a random variable in terms of the
descriptive Fisher’s measure

AX =
E[(X − µ)3]

σ3
,

where µ and σ denote the mean and the standard deviation of X, respectively. A disadvantage
of this measure is that it can be arbitrarily large. Others skewness measures based on quantile
values assure a more stable and robust procedure in the event of outliers. For example, Boyley’s
coefficient is given by

b1 =
F−1X (0.75) + F−1X (0.25)− 2F−1X (0.5)

F−1X (0.75)− F−1X (0.25)
.

Groeneveld and Meeden (1984) proposed three coefficients (among others) in terms of the
quantile function. The first one is given by the curve

b2(p) =
F−1X (1− p) + F−1X (p)− 2F−1X (0.5)

F−1X (1− p)− F−1X (p)
,

for 0 < p < 1
2
. The second one is defined as

b3 =

∫ 1/2

0
[F−1X (1− p) + F−1X (p)− 2F−1X (0.5)]dp∫ 1/2

0
[F−1X (1− p)− F−1X (p)]dp

=
µ− F−1X (0.5)

E[|X − F−1X (0.5)|]
.

Finally, for X with finite interval support I = (a, b), the third coefficient is defined as

b4 = lim
p→0+

b2(p) =
b+ a− 2F−1X (0.5)

b− a
.
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Obviously, the previous coefficients are equal to zero when X is symmetric.
When comparing the skewness of two populations, an alternative to skewness coefficients is

to use a stochastic ordering, which captures the essence of what is meant when “a distribution
function is less skewed than another one” (for further details on stochastic orderings, see, e.g.,
Shaked and Shanthikumar, 2007). An excellent tool is the univariate convex transform order-
ing introduced by van Zwet (1964). Given two random variables X1 and X2 with distribution
functions FX1 and FX2 , it is well known that ψ(x) = F−1X2

(FX1(x)) is an increasing function
that maps the pth quantile of X1 to the corresponding pth quantile of X2. Additionally, un-
der certain regularity conditions, ψ also stochastically maps X1 onto X2, i.e., ψ(X1) =st X2.
Clearly inspired by the fact that an increasing convex function takes on large values in inter-
vals of the form (a,∞), the random variable X1 is said to be smaller than X2 in the convex
transform ordering, denoted by X1 ≤c X2, if

ψ(x) = F−1X2
(FX1(x)) is convex on the support of X1. (1)

In practice, an easy way to verify the convexity of ψ is to examine its plot, given by the so-
called quantile-quantile plot (QQ-plot), which can be obtained as the plot of (F−1X1

(p), F−1X2
(p)),

for all 0 < p < 1 (see Müller and Stoyan, 2002).
Providing a meaningful interpretation of the convex transform ordering, Marshall and

Olkin (2007, p. 70), succinctly stated: “imagine that the density fX1 of a random variable
X1 is graphed on a sheet of rubber that becomes thinner and thinner toward the right, and
thus more and more easily stretched toward the right. Now, grasp the right-hand edge of the
rubber sheet, stretch it out, and watch the density change shape. If fX1 was symmetric and
unimodal before stretching, then fX1 after stretching has become a new density fX2 which is
also unimodal, but which has a relatively long right-hand tail, i.e., fX2 is skewed to the right.
The flexibility requirement of the rubber sheet simply means that the horizontal axis has been
transformed by an increasing function ψ with increments increasing as one move to the right,
i.e., ψ(x+ ∆)− ψ(x) is increasing in x. Thus that ψ is convex”.

In line with the above, it is commonly accepted that any single skewness measure should be
preserved by the univariate convex transform ordering (see, e.g., MacGillivray, 1986; Arnold
and Groeneveld, 1995). In other words, if γ(X) represents a measure of skewness of a random
variable X, we can expect that

X1 ≤c X2 ⇒ γ(X1) ≤ γ(X2).

This is the case, for instance, of AX or b1.
It is also known that, in the case of nonnegative random variables, the convex transform

ordering also preserves the Gini coefficient (GI):

X1 ≤c X2 ⇒ GI(X1) ≤ GI(X2).

The Gini coefficient is a widely used income inequality indicator that recently has featured
in several environmental science papers (see, e.g., Cullis and van Koppen, 2007; and Chen et
al.,2012).
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One can also find many skewness measures for multivariate data that can broadly be
divided into three groups. The first group is made up of measures based on joint moments
of the random variable (Mardia, 1970; Mori et al., 1993). An alternative approach, proposed
by Malkovich and Afifi (1973), projects the random variable onto a line and defines the
multivariate skewness as the square of the skewness value maximizing some value of univariate
skewness. Finally, the third group uses volumes of simplexes (Oja, 1983).

Our aim is to study and compare skewness between two random variables, given some
additional information in terms of the conditional truncation of other explanatory variables,
and to demonstrate applications in the environmental sciences. The comparisons are based on
using the univariate convex transform ordering as proposed by van Zwet (1964) and involve
modelling the joint distribution of several random phenomena. Since copulas are mathematical
objects that are particularly suitable for modelling multivariate dependence between random
variables, independently of their marginal distributions they play a fundamental role in such
comparisons, as we will see later on.

Although this work is methodological in nature, the new notions are illustrated below with
examples of applications using environmental data on drought, air quality and sunshine and
humidity data.

The paper is organized as follows. In Section 2, we define the cs ordering, study its
main properties and present some examples involving the notion of copula. In Section 3, we
illustrate the interest of skewness comparisons through different datasets of real and simulated
data. Finally, Section 4 includes a commentary and our conclusions.

In relation to notation, “increasing” means “non-decreasing” and “decreasing” means
“non-increasing”. We consider absolutely continuous random variables with conditional distri-
bution functions with interval supports. Given a random variable X, we denote the cumulative
distribution function by FX , the survival function by FX and the corresponding generalized
quantile function by F−1X . Given an event A, we will denote by [X|A] a random vector, or
random variable, whose distribution is the conditional distribution of X given A.

2 Comparison of skewness for conditioned random vari-

ables

In the environmental sciences, there are many situations where we may be interested in
analysing the conditional random variable [X|Y ]. In particular, an important issue to be
addressed is the marginal behaviour of the random variable X under an adverse event. In
the case of a bivariate random variable (X, Y ) with a positive dependence structure, an ad-
verse event typically refers to an unusually large value for Y . In hydrology, for instance, data
associated with events such as peak flood or drought severity are computed given that an
explanatory variable values like flood volume or drought duration exceed a certain threshold
(see, e.g., Shiau, 2003; 2006).

As mentioned, random variables are generally dependent in hydrological problems. Dif-
ferent combinations of rainfall intensity and storm duration may generate storms with quite
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different characteristics, for instance, or river management may strongly depend upon the
joint features of flood peak and flood volume. Therefore, it is often crucial to be able to relate
the marginal distributions of different variables in order to obtain a joint law describing the
main features of the observed hydrological events. Copulas appear to be the most suitable
tool for studying this kind of dependency between two or more variables.

We recall that a bivariate copula C : [0, 1]2 → [0, 1] is a cumulative distribution function
with uniform margins on [0, 1]. The notion of copula was introduced by Sklar (1959) and
the main purpose of a bivariate copula is to describe the interrelation between two random
variables. Given a random vector X = (X, Y ) with margins FX , FY , there exists a copula CX

such that
FX(x, y) = P [X ≤ x, Y ≤ y] = CX(FX(x), FY (y)).

Sklar (1959) showed that any multivariate distribution function inherently embodies a copula
function. Furthermore, any copula correctly evaluated with two marginal distributions in the
right way leads to a multivariate distribution function. A similar procedure is possible for
the joint survival function of a random vector, leading to the notion of survival copula; more
precisely, given the joint survival function F of a random vector X, there exists a copula CX,
called survival copula of X, such that

FX(x, y) = P [X > x, Y > y] = CX(FX(x), F Y (y)).

It is important to note that a random vector has both a copula and a survival copula and
that these can be different. For a random vector X, the copula and the survival copula satisfy
that

CX(u, v) = u+ v − 1 + CX(1− u, 1− v).

Detailed properties for several types of copulas are described in Nelsen (1999) and Salvadori
et al. (2007). Copulas, which are being increasingly used in the environmental sciences, were
first used in hydrology by De Michele and Salvadori (2003) and by Favre et al. (2004).

Given X1 = (X1, Y1) and X2 = (X2, Y2), two bivariate random vectors, it is natural to
wonder about the comparison between X1 and X2, when Y1 and Y2, respectively, exceed some
risk values. Many valuable contributions can be found in this regard in the literature. Roy
(2002) and Belzunce et al. (2012) considered stochastic comparisons between the conditional
variables [X1|Y1 > y] and [X2|Y2 > y], for all y ∈ R, in terms of dispersion and concentration,
describing a number of applications in reliability and finance. Given that many situations
require the explanatory variable to exceed a risk value given by a quantile, Khaledi and Kochar
(2005) proposed a dispersive comparison between [X1|Y1 > F−1Y1

(p)] and [X2|Y2 > F−1Y2
(p)], for

all p ∈ (0, 1). A recent work on this topic is Sordo et al. (2015), who inspired our proposal
to compare the conditional distribution functions of [X1|Y1 > F−1Y1

(p)] and [X2|Y2 > F−1Y2
(p)]

(or, equivalently, [X1|FY1(Y1) ∈ (p, 1)] and [X2|FY2(Y2) ∈ (p, 1)]) in the univariate convex
transform ordering. The most important tool applied in our research, called conditionally
more skewed to the right ordering (cs ordering), is described in what follows.
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Definition 2.1. Let X1 = (X1, Y1) and X2 = (X2, Y2) be two bivariate random vectors. We
say that X2 is conditionally more skewed to the right than X1, for short cs ordering and
denoted by X1 ≤cs X2, if

[X1|Y1 > F−1Y1
(p)] ≤c [X2|Y2 > F−1Y2

(p)], for all p ∈ (0, 1).

Given that interest is normally in one of the margins of the random vector, it should be
noted that the cs ordering depends on the permutations of the components of the random
vector. Obviously, a stronger order can be defined if we additionally require the comparison
on interchanging the role played by the components in Definition 2.1. It is also clear that the
cs ordering is reflexive and transitive.

From (1) and just considering the definition of the univariate convex transform ordering,
it is apparent that X1 ≤cs X2 holds if the function ψp defined as

ψp(x) = F−1
[X2|Y2>F−1

Y2
(p)]

(
F[X1|Y1>F−1

Y1
(p)](x)

)
, (2)

is convex in the support of X1, for all p ∈ (0, 1).
At this point, it is natural to wonder about the relationship between the function ψp(x)

given in (2) and the concept of copula. Given a bivariate random vector X = (X, Y ) with
copula CX, if we define

lp,CX
(u) =

u− CX(u, p)

1− p
, for all u ∈ [0, 1], p ∈ (0, 1), (3)

it is easy to see that

P [X ≤ x|Y > F−1Y (p)] = lp,CX
(FX(x)), for all p ∈ (0, 1).

Therefore, given two bivariate random vectors X1 = (X1, Y1) and X2 = (X2, Y2) with copulas
C1 and C2, respectively, an equivalent way of expressing (2) is as

ψp(x) = F−1X2
(l−1p,C2

(lp,C1(FX1(x)))), (4)

for all x in the support of X1. As a first consequence, it is clear that the cs ordering does not
depend on the distribution functions of the second random variables.

Both the expressions (2) and (4) can be used in practice to check the cs ordering. In-
tuitively, it seems that (2) is more mathematically tractable when the bivariate distribution
functions are given, whereas (4) can be useful for constructing many possible examples, once
copulas are identified and we can compute the inverse of (3).

Of the existing types of copula (or survival copula), the Archimedean type is widely used
in hydrology (Shiau and Shen, 2001; Favre et al., 2004; Genest and Favre, 2007; Zhang and
Singh, 2007). These (survival) copulas are given by

Cφ(u, v) = φ−1(φ(u) + φ(v)), for all u, v ∈ (0, 1), (5)
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where φ is a continuous, convex and decreasing function called the copula generator. It is also
easy to see that φ−1 is a survival function. As pointed out in Nelsen (1999), many standard
bivariate distributions (such as those in the Clayton-Oakes, Gumbel and Frank families) are
special cases of this class.

An interesting observation is that when the survival copula belongs to the Archimedean
family, then the function lp,C is invertible and closed form expressions for (3) can be obtained.
Therefore, it is possible to verify whether the conditions for the cs ordering hold or not. If
a random vector X has an Archimedean survival copula Cφ, from (3) and (5) we easily have
that

lp,Cφ(u) = 1− φ−1(φ(1− u) + φ(1− p))
1− p

.

Now, let X1 = (X1, Y1) and X2 = (X2, Y2) be two random vectors with Archimedean
survival copulas Cφ1 and Cφ2 , and let, for i = 1, 2,

Ri(x) = φi(FXi(x)), for all x ∈ R,
Wp,i(x) = φ−1i (x+ φi(1− p)), for all p ∈ (0, 1), x ∈ R.

Note that Ri(x) and Wp,i(x), i = 1, 2, are non-decreasing functions. From (4), the following
result is obtained.

Proposition 2.2. Under the previous notation, if X1 = (X1, Y1) and X2 = (X2, Y2) are two
random vectors with Archimedean survival copulas Cφ1 and Cφ2, then

ψp(x) = R−12

(
W−1
p,2 (Wp,1(R1(x)))

)
. (6)

Proof. We have that

ψp(x) = F−1X2

(
l−1p,Cφ2

(lp,Cφ1 (FX1(x)))
)

= F−1X2

(
1− φ−12 (φ2(φ

−1
1 (φ1(1− FX1(x)) + φ1(1− p))− φ2(1− p))

)
= R−12

(
W−1
p,2 (Wp,1(R1(x)))

)
. (7)

�

Due to well known fact that the composition of non-decreasing convex functions is also a
convex function, we have the following result.

Corollary 2.3. If R1 and W−1
p,2Wp,1 are convex, and R2 is concave, then ψp is convex, i.e.,

X1 ≤cs X2.

Next we provide an interesting example related to the classical Archimedean survival
copulas.
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Example 2.4. As a particular case we recall the bivariate Pareto distribution of the first kind,
denoted by P(I) (see, e.g., Johnson et al., 1994). For α, β ≥ 0 and θ > 0, X = (X, Y ) ∼
P(I)(α, β, θ) if its joint survival function is given by

FX(x, y) = P (X > x, Y > y) =

(
x

α
+
y

β
− 1

)−1/θ
, for all x > α, y > β.

It is known that this bivariate distribution has Pareto margins, in particular,

FX(x) =
(x
α

)−1/θ
, for all x > α,

and a Clayton-Oakes survival copula, that is,

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ,

which is an Archimedean copula with generator φ(x) = x−θ − 1.
Now, let X1 = (X1, Y1) ∼ P(I)(α1, β1, θ1) and X2 = (X2, Y2) ∼ P(I)(α2, β2, θ2). In this

case, we have

Ri(x) =
x

αi
− 1, for all x > αi,

Wp,i(x) = [x+ φi(1− p) + 1]−1/θi , for all p ∈ (0, 1), x > αi.

From Corollary 2.3, X1 ≤cs X2 whenever θ1 < θ2. From (6), the expression of ψp(x) is given
by

ψp(x) = α2

{[
x

α1

+ (1− p)−θ1 − 1

]θ2/θ1
− (1− p)−θ2 + 1

}
, for all x ≥ α1.

In Figure 1, we plot the joint density functions of bivariate Pareto distributions for α1 =
β1 = α2 = β2 = 0.5, θ1 = 1/9 and θ2 = 1/3. Clearly, the bivariate Pareto with θ2 = 1/3 (b) is
more skewed to the right than the bivariate Pareto with θ1 = 1/9 (a).

x

y

z

(a)

x

y

z

(b)

Figure 1: Joint density function for the bivariate Pareto distributions for α1 = β1 = α2 =
β2 = 0.5 and θ1 = 1/9 (a) and θ2 = 1/3 (b).
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Next we present an example where explicit computations of ψp are feasible using a non-
Archimedean copula. It can be useful to construct many possible examples of the cs ordering
by playing with different margins.

Example 2.5. In this example, the non-Archimedean Farlie-Gumbel-Morgenstern copula is
considered. This copula is given by

Cθ(u, v) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1].

In this case, lp,C is a polynomial of degree two. Specifically,

lp,Cθ(u) = θpu2 + (1− θp)u.

Given X1 = (X1, Y1) and X2 = (X2, Y2) having Farlie-Gumbel-Morgenstern copulas with
parameters θ1 and θ2, respectively, by (4), we obtain that

ψp(x) = F−1X2
(l−1p,Cθ2

(lp,Cθ1 (FX1(x))))

= F−1X2

−(1− θ2p) +
√

[1− θ2p(1− 2FX1(x))]2 + p2θ2(θ1 − θ2) [(1− 2FX1(x))2 − 1]

2θ2p

 .

We now ask ourselves about the relationship between cs ordering and comparisons of the
marginal distributions. In particular, if two random vectors are ordered in the cs ordering,
the first margins are also ordered in the univariate convex transform ordering.

Proposition 2.6. Let X1 = (X1, Y1) and X2 = (X2, Y2) be two random vectors. If X1 ≤cs X2,
then X1 ≤c X2.

Proof. By taking the limit when p tends to 0 in (4), it is evident that ψp(x) = F−1X2
(FX1(x)),

which concludes easily the proof. �

Unfortunately, the reverse of Proposition 2.6 is not necessarily true. In order to study
when the marginal behaviour determines the cs ordering, we need to fix the dependence
structure between the random variables. A particularly interesting situation is to assume that
both random vectors share the same dependence structure, i.e., they have the same copula
C = C1 = C2. Important contributions for this case have been made by Müller and Scarsini
(2001), Khaledi and Kochar (2005), Belzunce et al. (2008) and Balakrishnan et al. (2011),
among others. The result below shows that the cs ordering is reduced to the comparison
between the first margins when the bivariate random vectors share the same copula.

Proposition 2.7. Let X1 = (X1, Y1) and X2 = (X2, Y2) be two random vectors with a common
copula C = C1 = C2. Then, X1 ≤cs X2 if, and only if, X1 ≤c X2.

Proof. By (4), it is evident that

ψp(x) = F−1X2
(FX1(x)), for all p ∈ (0, 1).

whenever C1 = C2. The proof follows easily. �
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Example 2.8. An interesting situation where two random vectors have the same copula arises
when we consider consecutive values for record weather conditions. Chandler (1952) introduced
the mathematical notion of record values to study, from a statistical point of view, sequences
of record values that arise in practice. Let X1, X2, . . . be a sequence of i.i.d. random variables,
which can be considered as independent observation of some random environmental data of
interest X. At this point, we would like to emphasize that samples taken relatively close
together in space or time are to some degree redundant, i.e., they are usually highly correlated.
Therefore, this model is useful when the samples can be taken sufficiently distant in time in
order to eliminate or weaken the autocorrelation.

Let F denote the distribution function of an absolutely continuous random variable X and
let f denote the corresponding density function. Record values are defined by means of record
times, so first let us recall the definition of record times. Given a sequence of i.i.d. random
variables as above, record times are given by

L(1) = 1,

L(j) = min{j > L(j − 1)|Xj > XL(j−1)}, j = 2, 3, . . .

The sequence of the first n record values is defined as

X(j) = XL(j), j = 1, 2, . . . , n.

In this context, given two sequences of record values, e.g. record values based on a random
variable measured in two different locations, denoted by X and Y , it would be interesting to
provide comparisons of the rth record values, i.e., X(r) and Y(r), under some additional infor-
mation regarding a previous record value, for any r = 2, . . . , n. The cs notion we introduced
above provides a tool for such kind of comparisons. In particular, we provide a result for the
comparison in the cs ordering of (X(r), X(i)) and (Y(r), Y(i)) for all i, r ∈ {1, . . . , n} such that
i < r.

From the general framework of generalized order statistics explained in detail in Kamps
(1995a) and (1995b), it is well known that random vectors given by the first n record values
based on different baseline distributions share a common copula and satisfy that

F−1Y(j)

(
FX(j)

(x)
)

= F−1Y (FX(x)), j = 1, 2, . . . , n. (8)

Therefore, just using the marginalization property of copulas, the random vectors (X(r), X(i))
and (Y(r), Y(i)) share a common copula, for all i, r ∈ {1, . . . , n} such that i < r.

Therefore, from Proposition 2.7, we have that[
X(r)

∣∣X(i) > F−1X(i)
(p)
]
≤c
[
Y(r)

∣∣Y(i) > F−1Y(i)
(p)
]
,

for all i, r ∈ {1, . . . , n} such that i < r, for all p ∈ (0, 1), if, and only if, X(r) ≤c Y(r) or,
equivalently, from (8), if, and only if, X ≤c Y .

It is important to note that for record values, the first component is equally distributed as
the distribution from which the record values arise. Consequently, X(1) ≤c Y(1) is a sufficient
condition for a comparison in the cs ordering between two consecutive record values from two
populations.
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It is a well-known fact that a copula is preserved by increasing transformations of the
marginal distributions. The following corollary is a direct consequence in case of identical
copulas and it merely remains to compare the first margins. Proof has been omitted as being
straightforward.

Corollary 2.9. Let X1 = (X1, Y1) and X2 = (α(X1), β(Y1)) be two bivariate random vectors
where α and β are strictly increasing. If α is a convex function, then X1 ≤cs X2.

To conclude this section, a meaningful interpretation in terms of bivariate quantile curves
and exceedence events of the form {X > x, Y > y} is provided.

Proposition 2.10. Let X1 = (X1, Y1) and X2 = (X2, Y2) be two random vectors. If X1 ≤cs
X2, then

[X1|Y1 > F−1Y1
(p1), X1 > F−1

[X1|Y1>F−1
Y1

(p1)]
(p2)]

≤c [X2|Y2 > F−1Y2
(p1), X2 > F−1

[X2|Y2>F−1
Y2

(p1)]
(p2)], for all p1, p2 ∈ (0, 1).

Proof. Recall that given two random variables X1 and X2, it is well-known that the convex
transform ordering is preserved under truncation on quantiles, i.e.,

X1 ≤c X2 ⇒ [X1|X1 > F−1X1
(p)] ≤c [X2|X2 > F−1X2

(p)], for all p ∈ (0, 1). (9)

The proof concludes with the calculation, using (9), of the univariate conditional distributions
[X1|Y1 > F−1Y1

(p)] and [X2|Y2 > F−1Y2
(p)]. �

Belzunce et al. (2007) defined a bivariate vector-valued quantile notion that has been suc-
cessfully applied in hydrology (see Chebana and Ouarda, 2011). Let (X, Y ) be an absolutely
continuous random vector and p ∈ (0, 1). The pth bivariate quantile set or bivariate quantile
curve for the direction ε is defined as

QX,Y (p, ε) = {(x, y) ∈ R2 : Fε(x, y) = p},

where Fε(x, y) represents one of the following probabilities: Fε++(x, y) = Pr(X ≥ x, Y ≥ y),
Fε−−(x, y) = Pr(X ≤ x, Y ≤ y), Fε+−(x, y) = Pr(X ≥ x, Y ≤ y) and Fε−+(x, y) = Pr(X ≤
x, Y ≥ y). Chebana and Ouarda (2011) indicate that, of the four events described above,
simultaneous exceedence {X ≥ x, Y ≥ y} would be of particular interest in hydrology. This
is mainly due to the positive correlation generally observed between the X and Y variables;
specifically, those events are important when floods are considered.

Under regularity conditions, quantile curves can be described in a parametric way. It can
be observed that Fε++(x, y) = p represents a curve on the plane which can be expressed by
means of the quantiles for the conditional distribution [X|Y ≥ y] as follows:

QX,Y (p, ε++) =

{
(xp(u), yp(u)) =

(
F−1
[X|Y≥F−1

Y (u)]

(
1− p

1− u

)
, F−1Y (u)

)
: u < 1− p

}
. (10)
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Figure 2 shows the survival quantile curve QX,Y (p, ε++) given by Fε++(x, y) = p. All points
of the form (xp(u), yp(u)) in (10) represent exceedence events such that

Fε++(xp(u), yp(u)) = Pr(X ≥ xp(u), Y ≥ yp(u)) = p.

Let X1 = (X1, Y1) and X2 = (X2, Y2) be two random vectors and p ∈ (0, 1). Let us consider
(x1p(u), y1p(u)) and (x2p(u), y2p(u)) all points of the form in (10) for X1 and X2, respectively.
From Proposition 2.10, it is clear that X1 ≤cs X2 implies that

[X1|X1 > x1p(u), Y1 > y1p(u)] ≤c [X2|X2 > x2p(u), Y2 > y2p(u)], ∀p ∈ (0, 1) and u < 1− p.

Observe that the cs ordering leads us to compare the conditional distributions for all excee-
dence events given in the pth quantile survival curve.

QX,Y (p, ε++)

(xp(u), yp(u))

F−1
X

(1 − p)

F−1
Y

(1 − p)

(F−1
X

(1 − p), F−1
Y

(1 − p))

Figure 2: Survival curve.

3 Application to some datasets

The cs concept allows us to compare a whole bunch of examples in terms of skewness. In this
section some examples with real data are presented. Our interest is not to develop a formal
test but to provide reasonable empirical evidence of the cs ordering.

3.1 Datasets with the same copula

From Proposition 2.7, comparison in the cs ordering is simplified when random vectors have
the same copula. Two different situations are described in what follows.
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Droughts

Drought stemming from an absence of rainfall can affect humid and arid regions and may imply
inadequate water supplies in urban and agricultural areas. Two of the most important features
of a drought are duration and severity, defined in terms of the standardized precipitation index
(SPI) introduced by McKee et al. (1993). A drought event is defined as a period with negative
SPI values. Drought duration, denoted by D, is when the SPI is continuously negative, while
drought severity, denoted by S, reflects cumulative values of SPI during a drought as given by

S = −
D∑
i=1

SPIi.

For convenience, drought severity is taken to be positive. For further information, see Patel
et al. (2007). Drought severity and duration are usually abstracted from observed drought
data and fitted by a probabilistic model. Of interest is not only the univariate distributions
but also the dependence structure.

Let us consider the particular copula-based drought severity-duration study undertaken by
Shiau and Modarres (2009), who analysed rainfall data for the period 1954-2003 collected from
two stations located in Abadan and Anzali in Iran. In particular, the three-month SPI was cal-
culated as described by Vicente-Serrano (2006). Under these assumptions, let X1 = (S1, D1)
and X2 = (S2, D2) be two random vectors reflecting drought severity-duration for Abadan
and Anzali, respectively. Shiau and Modarres (2009) fitted the univariate distributions and
the bivariate copula and showed that drought severity S and duration D can be fitted to the
gamma and exponential distributions with univariate density functions given by

fS(s) =
sα−1

βαΓ(α)
e−s/β, for all s > 0,

fD(d) =
1

λ
e−d/λ, for all d > 0,

respectively. By the maximum likelihood method, these authors also estimated the parameters
(Table 1), for which the hypothesis of proposed gamma and exponential distributions to
model drought severity and duration for Abadan and Anzali by the Kolmogorov-Smirnov
test, respectively, could not be rejected.

The Clayton-Oakes copula (see Example 2.4) was considered to model the dependence
structure, with the corresponding parameters estimated using the method of inference function
for margins (Joe, 1997). In particular, θ̂X1 = 1.527 for Abadan and θ̂X2 = 1.497 for Anzali
(see Table 1).
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Figure 3: Empirical copulas for X1 and X2.

Station Abadan Anzali

θ̂ 1.527 1.497
Severity (gamma) α̂ (shape) 0.737 0.917

β̂ (scale) 2.796 3.277

Duration (exponential) λ̂ 2.125 3.129

Table 1: Parameters for the margins and copulas for X1 and X2.

Figure 3 shows estimates of the empirical copula for X1 and X2 given by the pseudo-
observations. Observing the scatter plots of the empirical copulas and considering the Table 1
estimates of the dependency parameters, we can assume that X1 and X2 share the same copula.
The fact that estimates of the classical Spearman’s rho coefficient - a well-known concordance
measure of dependency - take similar values (ρ̂S(X1) = 0.877 and ρ̂S(X2) = 0.905) reinforces
this observation.

It is known that ifX1 andX2 are distributed as gamma distributions with shape parameters
α1 and α2, respectively, such that α1 ≥ α2, then X1 ≤c X2 (see van Zwet, 1964). In our
case, the fact that the estimated shape parameter for S1 (α̂1 = 0.737) is smaller than for S2

(α̂2 = 0.917) is reasonable empirical evidence to affirm that S1 ≥c S2. Hence, the previous
fact combined with Proposition 2.7 would lead us to expect that X1 is more right-skewed than
X2.

Air quality

Let us consider the following two real bivariate data vectors: the daily quantities of ozone
(O3) and nitrogen oxides (NOX) for years 2011 and 2012 in Murcia (Spain), denoted by
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X1 = (O2011
3 , NO2011

X ) and X2 = (O2012
3 , NO2012

X ), respectively. These data can be downloaded
from the Murcia Air Quality website: http://www.carm.es/cmaot/calidadaire/portal/. Ozone
(naturally produced in the atmosphere) is helpful in protecting us from the effects of the
sun in the upper layer of the sky but can be dangerous when it occurs close to the earth.
Nitrogen oxides NOX produced from the reaction of nitrogen and oxygen gases in the air
during combustion, most especially at high temperatures, are also dangerous for human health.
The literature amply deals with the relationships between these pollutants (see, e.g., Crutzen,
1970; Clapp and Jenkin, 2001; Wu et al., 2006). At this point, we might ask how the quantities
of one pollutant affect concentrations of the other pollutant.

We obtained a bivariate sample of size n = 365 for each year. Straightforward computation
shows that the time series of ozone and nitrogen oxides are highly auto-correlated, which is
only to be expected as the time step is daily for the time series. Since we were not concerned
with making predictions, we did not take the auto-correlation into account. For further
research, however, it would be interesting to study how auto-correlation affects forecasts.
Figure 4 depicts the bivariate plots for 2011 and 2012, showing not only a similar dependence
structure, but also that the plot corresponding to 2012 seems to be obtained by expanding
the plot corresponding to 2011.
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Figure 4: Bivariate plots.

As we have seen in Proposition 2.7, the copula approach simplifies the multivariate com-
parison of random vectors. In fact, copulas have been extensively used for climate studies
because the dependence structures of random vectors are shared when dealing with different
years or places. The analysis of environmental phenomena makes it possible to easily compare
two random vectors.

Figure 5 shows estimates for the empirical copulas for X1 and X2 given by the pseudo-
observations. From these scatter plots and from the Spearman’s rho values of ρ̂S(X1) = −0.890
and ρ̂S(X2) = −0.876, we can assume that X1 and X2 share the same copula.
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Figure 5: Empirical copulas for X1 and X2.

Hence, using Proposition 2.7, a sufficient condition for the cs ordering is given by the
comparison of the underlying marginal distributions in the convex order. Figure 6 depicts the
classical QQ-plot for O2011

3 and O2012
3 . Although the properties of the QQ-plot estimate would

need to be studied in greater detail in order to develop a formal test for the convex order,
Figure 6 shows reasonable empirical evidence that the QQ-plot is convex, i.e., O2012

3 is less
in the univariate convex transform ordering than O2011

3 . Recalling again Proposition 2.7, this
fact suggests that X1 ≥cs X2, i.e., X1 is more right-skewed than X2.
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Figure 6: QQ-plot for O2011
3 and O2012

3 .

3.2 Datasets with different copulas

Below we provide two graphical tools to study the more complicated case of the cs ordering
between two random vectors with different copulas.
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As pointed out earlier, convex transform ordering compares skewness between two datasets.
Arnold and Groeneveld (1995) suggested that any skewness measure has to be preserved by
this order. The convex transform ordering can be considered a concentration order because
it preserves the Gini coefficient (see Section 1). Given two bivariate random vectors X1 =
(X1, Y1) and X2 = (X2, Y2), we denote by GIi and γi, i = 1, 2, the following real functions

GIi : (0, 1) 7→ [0, 1],GIi(p) = GI
(
[Xi|Yi > F−1Yi

(p)]
)
,

γi : (0, 1) 7→ R, γi(p) = γ
(
[Xi|Yi > F−1Yi

(p)]
)
.

In practice, the Gini coefficient function is defined as twice the area between the 45 degree
line and the Lorenz curve, and it can be easily computed. In particular, we use the reldist

package in the statistical software R. Of the many skewness measures that can be considered,
Joanes and Gill (1998) discussed three methods. In particular, they estimated γ = m3/m

3/2
2 ,

where mr are the sample moments of order r, as a skewness measure that can be computed
using the e1071 package in R.

Following the same procedure as in (1), the sets

{(pk, ĜIi(pk)), for k = 1, . . . ,m} and i = 1, 2, (11)

{(pk, γ̂i(pk)), for k = 1, . . . ,m} and i = 1, 2, (12)

provide non-parametric estimations of the graphs for GIi and γi, i = 1, 2. Note that ĜIi and
γ̂i represent non-parametric estimators of the Gini and skewness indexes, respectively, based
on the empirical distribution, and that pk, k = 1, . . . ,m, are univariate values in (0, 1). From
the graphical plots of (11) and (12) for i = 1, 2 we can easily compare the Gini indexes or
skewness coefficients for the conditional distributions of X1 and X2, respectively.

The results obtained would indicate these numerical methods to be feasible paths to study-
ing the cs ordering between two bivariate random vectors (the R-code is provided in Belzunce
et al., 2015). An example follows.

Sunshine and humidity

To illustrate the bivariate analysis in the case of different copulas, we used daily data on
sunshine and humidity for Alicante in Spain and Berlin-Tegel in Germany downloaded from
the website of the European Climate Assessment and Dataset project (http://www.ecad.eu/;
for further information, see Klein-Tank et al., 2002). As in Example 3.1, we are not interested
in making predictions, so we assumed that both bivariate samples are representative of random
quantities of sunshine and humidity. Let X1 = (X1, Y1) and X2 = (X2, Y2) be the sunshine
and humidity observations for Alicante and Berlin-Tegel, respectively.

Figure 7 depicts the scatter plots for the empirical copulas, revealing important differences.
In this case, the Spearman’s rho values (ρ̂S(X1) = −0.311 and ρ̂S(X2) = −0.849) were not
similar as happened with the previous cases, so we can assume that X1 and X2 do not share
the same copula.
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Figure 7: Empirical copulas for X1 and X2.

Figure 8 depicts the QQ-plots and the conditional Gini and skewness coefficients for both
random vectors. Note that although the QQ-plots in (a) are not clearly convex, the two
indexes are ordered.

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

(a)

Quantiles

0.25
0.5
0.75

0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

(b)

GI2
GI1

0.0 0.2 0.4 0.6 0.8

−
2

−
1

0
1

2
3

(c)

γ2
γ1

Figure 8: QQ-plots of the conditional random variables for p = 0.25, 0.5, 0.75 (a), conditional
Gini indexes (b) and conditional skewness coefficients for X1 and X2 (c).

4 Conclusions and further remarks

Skewness can be studied through comparisons of many single measures, but stochastic or-
derings and, in particular, the univariate convex transform ordering proposed by van Zwet
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(1964), provide a more complete comparison between skewness for two random variables. In
situations where bivariate random vectors are considered, interest focused on the behaviour
of a certain type of conditional random variable constructed with the margins of such random
vectors. For example, given X = (X1, Y1) and Y = (X2, Y2), we may be interested in compar-
ing [X1|Y1 > F−1Y1

(p)] and [X2|Y2 > F−1Y2
(p)], and hence we may want to decide which of those

vectors is more right-skewed.
As was demonstrated above, the dependency structure of the random vectors plays an

important role in an analysis of skewness through the cs ordering. When we are dealing
with two random vectors with the same copula, it is merely a matter of comparing the first
margins in the univariate convex transform order. The situation is more complicated for
random vectors with two different copulas. Analytical comparison can be made for some
Archimedean copulas. For the rest of cases, two graphical tools were described.

The study of real phenomena usually involves random vectors with more than two random
variables. Note that the cs ordering ordering can easily be extended to the general multivariate
case. Thus, given two random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), X is said to
be smaller than Y in the conditionally skewed to the right order, denoted by X ≤cs Y, if

[X1|X2 > F−1X2
(p), . . . , Xn > F−1Xn

(p)] ≤c [Y1|Y2 > F−1Y2
(p), . . . , Yn > F−1Yn

(p)], for all p ∈ (0, 1).

Note that all properties and relationships of the cs ordering can be generalized to this general
case and that the cs ordering can also be generalized to the conditional distribution of X1

given FY1(Y1) ∈ [p1, p2] for 0 ≤ p1 < p2 ≤ 1. In that case, P (X1 ≤ x|FY1(Y1) ∈ [p1, p2]) =
lp1,p2,C(FX1(x)), where C1 is the copula of X1 = (X1, Y1) and

lp1,p2,C1(u) =
C1(u, p2)− C1(u, p1)

p2 − p1
.

Since the comparison is based on a function ψp1,p2 , many of the properties for ψp can be easily
translated to ψp1,p2 . Special cases are, for instance, p1 = p, p2 = 1 (which is the focus of the
present work), and also p1 = 0, p2 = p or p2 → p1 = p, to be considered in future research.
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[29] Mori T.F., Rohatgi V.K., Székely G.J. 1993. On multivariate skewness and kurtosis.
Theory of Probability and its Applications 38, 547-551.

[30] Müller A., Scarsini M. 2001. Stochastic comparison of random vectors with a common
copula. Mathematics of Operations Research 26, 723-740.

22



[31] Müller A., Stoyan D. 2002. Comparison Methods for Stochastic Models and Risks. John
Wiley & Sons, Chichester, England.

[32] Nelsen R.B. 1999. An Introduction to Copulas. Lectures Notes in Statistics 139. Springer-
Verlag, New York.

[33] Oja H. 1983. Descriptive statistics for multivariate distributions. Statistics and Probability
Letters 1, 327-332.
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[44] Sklar A. 1959. Fonctions de répartitions à n dimensions et leurs marges. Publications de
l’Institut de Statistique de l’Université de Paris 8, 229-231.
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