171 research outputs found

    Back reaction of a long range force on a Friedmann-Robertson-Walker background

    Get PDF
    It is possible that there may exist long-range forces in addition to gravity. In this paper we construct a simple model for such a force based on exchange of a massless scalar field and analyze its effect on the evolution of a homogeneous Friedmann-Robertson-Walker cosmology. The presence of such an interaction leads to an equation of state characterized by positive pressure and to resonant particle production similar to that observed in preheating scenarios.Comment: 14 pages, 6 color Postscript figures, LaTe

    Observational evidence for self-interacting cold dark matter

    Get PDF
    Cosmological models with cold dark matter composed of weakly interacting particles predict overly dense cores in the centers of galaxies and clusters and an overly large number of halos within the Local Group compared to actual observations. We propose that the conflict can be resolved if the cold dark matter particles are self-interacting with a large scattering cross-section but negligible annihilation or dissipation. In this scenario, astronomical observations may enable us to study dark matter properties that are inaccessible in the laboratoryComment: 4 pages, no figures; added references, pedagogical improvements, to appear in PR

    Linear and non-linear perturbations in dark energy models

    Full text link
    I review the linear and second-order perturbation theory in dark energy models with explicit interaction to matter in view of applications to N-body simulations and non-linear phenomena. Several new or generalized results are obtained: the general equations for the linear perturbation growth; an analytical expression for the bias induced by a species-dependent interaction; the Yukawa correction to the gravitational potential due to dark energy interaction; the second-order perturbation equations in coupled dark energy and their Newtonian limit. I also show that a density-dependent effective dark energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a typ

    PARP1 suppresses homologous recombination events in mice in vivo

    Get PDF
    Recent studies suggest that PARP1 inhibitors, several of which are currently in clinical trial, may selectively kill BRCA1/2 mutant cancers cells. It is thought that the success of this therapy is based on immitigable lethal DNA damage in the cancer cells resultant from the concurrent loss or inhibition of two DNA damage repair pathways: single-strand break (SSB) repair and homologous recombination repair (HRR). Presumably, inhibition of PARP1 activity obstructs the repair of SSBs and during DNA replication, these lesions cause replication fork collapse and are transformed into substrates for HRR. In fact, several previous studies have indicated a hyper-recombinogenic phenotype in the absence of active PARP1 in vitro or in response to DNA damaging agents. In this study, we demonstrate an increased frequency of spontaneous HRR in vivo in the absence of PARP1 using the pun assay. Furthermore, we found that the HRR events that occur in Parp1 nullizygous mice are associated with a significant increase in large, clonal events, as opposed to the usually more frequent single cell events, suggesting an effect in replicating cells. In conclusion, our data demonstrates that PARP1 inhibits spontaneous HRR events, and supports the model of DNA replication transformation of SSBs into HRR substrates

    The Transcription Factor Rfx3 Regulates β-Cell Differentiation, Function, and Glucokinase Expression

    Get PDF
    OBJECTIVE: Pancreatic islets of perinatal mice lacking the transcription factor Rfx3 exhibit a marked reduction in insulin-producing beta-cells. The objective of this work was to unravel the cellular and molecular mechanisms underlying this deficiency. RESEARCH DESIGN AND METHODS: Immunofluorescence studies and quantitative RT-PCR experiments were used to study the emergence of insulin-positive cells, the expression of transcription factors implicated in the differentiation of beta-cells from endocrine progenitors, and the expression of mature beta-cell markers during development in Rfx3(-/-) and pancreas-specific Rfx3-knockout mice. RNA interference experiments were performed to document the consequences of downregulating Rfx3 expression in Min6 beta-cells. Quantitative chromatin immunoprecipitation (ChIP), ChIP sequencing, and bandshift experiments were used to identify Rfx3 target genes. RESULTS: Reduced development of insulin-positive cells in Rfx3(-/-) mice was not due to deficiencies in endocrine progenitors or beta-lineage specification, but reflected the accumulation of insulin-positive beta-cell precursors and defective beta-cells exhibiting reduced insulin, Glut-2, and Gck expression. Similar incompletely differentiated beta-cells developed in pancreas-specific Rfx3-deficient embryos. Defective beta-cells lacking Glut-2 and Gck expression dominate in Rfx3-deficent adults, leading to glucose intolerance. Attenuated Glut-2 and glucokinase expression, and impaired glucose-stimulated insulin secretion, were also induced by RNA interference-mediated inhibition of Rfx3 expression in Min6 cells. Finally, Rfx3 was found to bind in Min6 cells and human islets to two well-known regulatory sequences, Pal-1 and Pal-2, in the neuroendocrine promoter of the glucokinase gene. CONCLUSIONS: Our results show that Rfx3 is required for the differentiation and function of mature beta-cells and regulates the beta-cell promoter of the glucokinase gene

    The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas

    Get PDF
    The transcription factor Pax6 is a developmental regulator with a crucial role in development of the eye, brain, and olfactory system. Pax6 is also required for correct development of the endocrine pancreas and specification of hormone producing endocrine cell types. Glucagon-producing cells are almost completely lost in Pax6-null embryos, and insulin-expressing beta and somatostatin-expressing delta cells are reduced. While the developmental role of Pax6 is well-established, investigation of a further role for Pax6 in the maintenance of adult pancreatic function is normally precluded due to neonatal lethality of Pax6-null mice. Here a tamoxifen-inducible ubiquitous Cre transgene was used to inactivate Pax6 at 6 months of age in a conditional mouse model to assess the effect of losing Pax6 function in adulthood. The effect on glucose homeostasis and the expression of key islet cell markers was measured. Homozygous Pax6 deletion mice, but not controls, presented with all the symptoms of classical diabetes leading to severe weight loss requiring termination of the experiment five weeks after first tamoxifen administration. Immunohistochemical analysis of the pancreata revealed almost complete loss of Pax6 and much reduced expression of insulin, glucagon, and somatostatin. Several other markers of islet cell function were also affected. Notably, strong upregulation in the number of ghrelin-expressing endocrine cells was observed. These findings demonstrate that Pax6 is essential for adult maintenance of glucose homeostasis and function of the endocrine pancreas

    Retinoic Acid Promotes the Generation of Pancreatic Endocrine Progenitor Cells and Their Further Differentiation into β-Cells

    Get PDF
    The identification of secreted factors that can selectively stimulate the generation of insulin producing β-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based β-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of β-cells during normal pancreatic development such putative factors may be identified. In the mouse, β-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of β-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when β-cells are generated. We also provide evidence that RA induces the generation of Ngn3+ endocrine progenitor cells and stimulates their further differentiation into β-cells by activating a program of cell differentiation that recapitulates the normal temporal program of β-cell differentiation

    Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows

    Get PDF
    Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas

    Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors

    Get PDF
    BACKGROUND: PAX6 is a transcription factor playing a crucial role in the development of the eye and in the differentiation of the pancreatic endocrine cells as well as of enteroendocrine cells. Studies on the mouse Pax6 gene have shown that sequences upstream from the P0 promoter are required for expression in the lens and the pancreas; but there remain discrepancies regarding the precise location of the pancreatic regulatory elements. RESULTS: Due to genome duplication in the evolution of ray-finned fishes, zebrafish has two pax6 genes, pax6a and pax6b. While both zebrafish pax6 genes are expressed in the developing eye and nervous system, only pax6b is expressed in the endocrine cells of the pancreas. To investigate the cause of this differential expression, we used a combination of in silico, in vivo and in vitro approaches. We show that the pax6b P0 promoter targets expression to endocrine pancreatic cells and also to enteroendocrine cells, retinal neurons and the telencephalon of transgenic zebrafish. Deletion analyses indicate that strong pancreatic expression of the pax6b gene relies on the combined action of two conserved regulatory enhancers, called regions A and C. By means of gel shift assays, we detected binding of the homeoproteins PDX1, PBX and PREP to several cis-elements of these regions. In constrast, regions A and C of the zebrafish pax6a gene are not active in the pancreas, this difference being attributable to sequence divergences within two cis-elements binding the pancreatic homeoprotein PDX1. CONCLUSION: Our data indicate a conserved role of enhancers A and C in the pancreatic expression of pax6b and emphasize the importance of the homeoproteins PBX and PREP cooperating with PDX1, in activating pax6b expression in endocrine pancreatic cells. This study also provides a striking example of how adaptative evolution of gene regulatory sequences upon gene duplication progressively leads to subfunctionalization of the paralogous gene pair
    corecore