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The Developmental Regulator Pax6 Is Essential for
Maintenance of Islet Cell Function in the Adult Mouse
Pancreas
Alan W. Hart, Sebastien Mella, Jacek Mendrychowski, Veronica van Heyningen, Dirk A. Kleinjan*

Medical Research Council Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom

Abstract

The transcription factor Pax6 is a developmental regulator with a crucial role in development of the eye, brain, and olfactory
system. Pax6 is also required for correct development of the endocrine pancreas and specification of hormone producing
endocrine cell types. Glucagon-producing cells are almost completely lost in Pax6-null embryos, and insulin-expressing beta
and somatostatin-expressing delta cells are reduced. While the developmental role of Pax6 is well-established, investigation
of a further role for Pax6 in the maintenance of adult pancreatic function is normally precluded due to neonatal lethality of
Pax6-null mice. Here a tamoxifen-inducible ubiquitous Cre transgene was used to inactivate Pax6 at 6 months of age in
a conditional mouse model to assess the effect of losing Pax6 function in adulthood. The effect on glucose homeostasis and
the expression of key islet cell markers was measured. Homozygous Pax6 deletion mice, but not controls, presented with all
the symptoms of classical diabetes leading to severe weight loss requiring termination of the experiment five weeks after
first tamoxifen administration. Immunohistochemical analysis of the pancreata revealed almost complete loss of Pax6 and
much reduced expression of insulin, glucagon, and somatostatin. Several other markers of islet cell function were also
affected. Notably, strong upregulation in the number of ghrelin-expressing endocrine cells was observed. These findings
demonstrate that Pax6 is essential for adult maintenance of glucose homeostasis and function of the endocrine pancreas.
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Introduction

Maintenance of glucose homeostasis is essential for life and

health. The regulation of blood sugar levels is achieved by peptide

hormone secretion from the endocrine cells of the pancreas,

located in the islets of Langerhans. Dysfunction or destruction of

pancreatic b-cells leads to diabetes mellitus, and better un-

derstanding of the factors required for maintenance of functional

islet cells is of great medical importance. Over the past two

decades the identity and role of different transcription factors and

cell markers for pancreas development has become increasingly

well-defined, and significant insight has been achieved into the

combinations and interactions of regulatory factors required at

different stages [1–3]. The paired and homeodomain containing

transcription factor Pax6 plays a key role in the development of the

endocrine pancreas, in addition to its more widely known role in

eye, brain and olfactory system development [4]. Well-defined

disease phenotypes have been described in mammals carrying

heterozygous loss of function mutations. Homozygotes die neo-

natally with absent eyes and olfactory bulbs, with brain

malformations, as well as pancreatic insufficiency [5,6]. Pax6 is

required for the correct development and spatial organisation of

all islet cell precursors [6,7], following full endocrine progenitor

cell commitment triggered by the expression of high levels of Ngn3

[8]. Pax6 has been shown to be regulated by Pdx1 [9] and in

zebrafish the pax6b gene was demonstrated to be a direct pdx1

target [10]. Pax6 is subsequently required for the differentiation of

alpha cells [11]. Once the different endocrine cell types of the islet

are defined, Pax6 expression is necessary to control the precise

expression of each endocrine hormone: glucagon, insulin,

somatostatin and pancreatic polypeptide [7,12]. The more re-

cently identified epsilon cells, derived from Ngn3-positive endo-

crine precursors that have turned off Pax4 and Nkx2.2 [13,14],

produce the 28 amino acid orexigenic peptide ghrelin. A

proportion of alpha cells co-express ghrelin with glucagon. All

the endocrine cells carry secretagogue receptors for ghrelin, which

modulate endocrine hormone production. Towards the end of the

fetal stage the pancreas is the major source of ghrelin. Ghrelin is

also produced in the stomach, intestine and brain [15], and in

adult life these tissues are the major sites of production, while there

remain very few, if any ghrelin producing cells in the adult

pancreas [14]. Ghrelin-expressing cells are greatly increased while

different endocrine cell types are depleted in the developing

pancreas of Pax6-null, Pax4-null or Nkx2.2-null mice [13,14].

It is becoming increasingly clear that many key developmental

regulators fulfill multiple roles at different stages of development,

in the progression from initiation to commitment, differentiation

and maturation of cell types [3,16]. Once development has been

completed and the adult complement of cells established, a re-

quirement for tissue maintenance and regeneration may persist.
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The later role of developmentally acting transcription factors that

continue to be expressed into adulthood remains poorly explored.

However, there is evidence, for example for Pdx1 [17] and for the

non-pancreas-expressed gene Sox2 [18], that such genes also

function in tissue maintenance. Pax6 is expressed in a number of

adult tissues, including pancreatic islet cells [19,20,21], as well as

brain [22], olfactory [23] and ocular cells [24]. Functional deficits

in PAX6-expressing tissues have been observed in patients with

PAX6 haploinsufficiency, most notably associated with the

developmental eye anomaly aniridia (absence of the iris), where

corneal limbal stem cell defects [25] and deficits of olfactory

function and neurological organisation [26] have been reported

[22]. There have also been reports of glucose intolerance and

predisposition to diabetes in some individuals, and in some rodent

models, with heterozygous PAX6 mutations [19,20,21,27,28].

Because of the multiple essential functions fulfilled by Pax6 during

development, it is difficult to dissect its role in adult tissues where

Pax6 expression is maintained.

Here we have made use of a conditional Pax6 mouse mutant in

which exons 5–6 are flanked by LoxP sites [29], crossed with an

inducible Cre deletor strain [30] to study the potential role of Pax6

in adult tissue maintenance. Cre-mediated deletion of Pax6 in

healthy adult mice was activated at 6 months of age. We show that

the loss of Pax6 leads to a rapid appearance of diabetic symptoms

and strong deterioration in health within a few weeks. A number of

pancreatic hormones, transcription factors and insulin processing

enzymes are affected by the loss of Pax6, demonstrating an

essential role for Pax6 in the continued maintenance of pancreas

function in adult life.

Materials and Methods

Ethics Statement
This study was approved by the University of Edinburgh ethical

committee (approval ID TR-18-07) and performed under UK

Home Office license number PPL 60/3785. Animals were cared

for in accordance with the guidelines for animal care and

experimentation of the University of Edinburgh. All animals were

monitored twice daily by visual inspection and by weekly weight

measurements. Every effort was made to minimize suffering. The

experiment was terminated when weight loss in the CPTD6

(CreTM-Pax6 floxed-Tamoxifen-Diabetic) mice approached 20%

of starting body weight.

The Pax6flox mice were kindly provided by Drs Ian Simpson and

David Price. The Pax6flox, Pax6lacZ and CAGGCreERTM transgenic

lines have been published previously [6,29,30]. Mice were kept on

CD1 or hybrid B6CBAF1 background. Figure 1 shows the

combinations of alleles generated.

Tamoxifen Injections
Intraperitoneal injections of corn oil only (control animals) or

corn oil (glycerol trio-octonoate, Sigma C8267) containing

dissolved Tamoxifen (Sigma T5648) (100 microgram/gram body

weight) were administered to six month-old mice daily for 5

consecutive days. Prior to injection each animal was weighed and

the injection volume of a 20 mg/ml tamoxifen stock solution or of

corn oil alone adjusted accordingly.

Glucose Tolerance Tests
Animals were fasted for five hours prior to intraperitoneal

injection of 2 g glucose (Sigma) per kilogram of body weight.

Blood was drawn from the tail vein at 0, 15, 30, 60, 90, and 120

minutes after injection and glucose values were monitored using

an automatic glucometer (Accuchek, Roche).

Urine Glucose Tests
Urine glucose levels were monitored weekly. Urine was

collected from the animal and dropped onto a Diastix (Bayer)

glucose stick. In accordance with the manufacturers’ instructions

the result was recorded by photography after 30 seconds

incubation. Darkening of the glucose sensitive area on the stick

indicates an elevated urine glucose level that is compared to

a standard series provided by the manufacturer.

Immunofluorescence/immunohistochemistry
Tissues were fixed in 4% paraformaldehyde (PFA) for 3–6 hours

at room temperature and then embedded in either paraffin or

Tissue-Tek freezing solution. Sections were cut using a microtome

or cryostat and 5–10mm sections were collected onto Superfrost

slides. Microwave antigen retrieval with 10 mM Sodium Citrate

(pH 6) was used to unmask the antigen prior to incubation in

blocking solution of PBS/0.1% sheep serum. Primary antibodies

were incubated overnight at 4uC and secondary antibodies for 60

minutes at room temperature. The following antibodies were used:

Pax6 (Abcam), Insulin (Dako), Glucagon (Dako), Somatostatin

(Dako), PC1/3 (Pcsk1; Enzo), PC2 (Pcsk2; Enzo), Isl1 (kind gift

Helena Edlund), Pdx1 (Ipf1; kind gift Helena Edlund), Glut2

(Slc2a2; kind gift Helena Edlund), Ghrelin (Santa Cruz), Amylase

(Sigma), Nkx2.2 (DSHB), Nkx6.1 (DSHB). Alexa594 conjugated

secondary antibody (Invitrogen), FITC conjugated secondary

antibody (Jackson ImmunoResearch).

Quantification of Islet Cell Populations
Quantification of numbers of hormone producing cells relative

to the total islet cell number was performed using the cell counter

plug-in of Image J software (http://imagej.en.softonic.com/).

Hormone expressing cells (insulin, glucagon, somatostatin and

ghrelin) were visualised by their immunofluorescent marker and all

cells stained above background were counted as positive. Total

islet cell numbers were obtained by visualisation with DAPI

staining. Cell numbers were counted on sections from at least 4

different control and CPTD animals each. Total cell numbers

counted for presence of hormone expression were: Insulin (2209

control, 3398 CPTD6), Glucagon (2087 control, 2297 CPTD6),

Somatostatin (4122 control, 4889 CPTD6), Ghrelin (2193 control,

3145 CPTD6). Raw cell counts were analysed in Excel and

statistical analysis was done using a students t-test. Quantifications

were performed on pancreatic sections from four different animals

for each group (control and CPTD6).

Results

Generating Animals of Required Genotypes
The timeline of the experiment is schematically represented in

figure 1A. To generate mice of the required genotypes floxed Pax6

animals (Pax6flox/+) were crossed with CAGGCreERTM transgenic

mice to generate Pax6flox/+//CAGGCreERTM mice. These were

then crossed to heterozygous Pax6flox/+ or Pax6LacZ/+ mice to

generate animals of the desired genotypes (Figure 1B). Animals

were genotyped by PCR (details available on request). Two sets of

controls were included: 1. ‘‘Oil control’’, a set with the designated

genotypes including animals with and without the CAGGCreERTM

transgene, injected with corn oil only. 2. ‘‘Tamoxifen control’’,

a second set containing heterozygous and wild-type mice, with and

without the CAGGCreERTM transgene, injected with Tamoxifen.

The experimental group, designated ‘‘CPTD6’’, consisted of

Pax6flox/Pax6flox or Pax6flox/Pax6lacZ mice carrying the CAGG-

CreERTM transgene and injected with Tamoxifen.

Pax6 in Pancreatic Islet Cell Maintenance
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Figure 1. Experimental procedure used to investigate the role of Pax6 in the adult mouse pancreas. (A) Timeline of the experiment.
Mice were bred to obtain the various experimental and control genotypes. After a pre-experimental period of 6 months (indicated by the period to
the left of timepoint = 0 weeks) all mice received daily injections, with tamoxifen or oil only, on 5 consecutive days during week 1. Blood glucose level
and glucose tolerance measurements were carried out in the week prior to the injections and in the final week (week 5). All mice were sacrificed at
the end of week 5 and tissues were fixed for immunohistochemistry (B) Schematic representation of the combinations of genotypes and treatments

Pax6 in Pancreatic Islet Cell Maintenance
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Assessment of Initial Metabolic Status
To obtain baseline data the animals were weighed on a weekly

basis (Figure 1C) and their general health assessed from 4 weeks

prior to injections. No significant difference in weight between the

control and experimental groups (Figure 1C) was observed. In

addition, one week prior to injection (Week -1), urine glucose

measurement, fasting blood glucose and glucose tolerance tests

were performed (Figure 2A, B, C). Glucose was not detected in

urine samples from any animal in either the control or the

experimental groups (Figure 2A). Fasting blood glucose levels were

similar in both controls and CPTD6 mice (Figure 2B, white bars).

However, the glucose tolerance test (Figure 2C) revealed slight

intolerance in the CPTD6 group with the area under the curve

approximately 1.5 fold higher than in control animals (n = 5,

CPTD6, n= 12 Oil control, n = 7 Tamoxifen control). The

animals in the CPTD6 group were a combination of Pax6flox/

Pax6flox//CAGGCreERTM and Pax6flox/Pax6lacZ//CAGGCreERTM,

but were predominantly the latter genotype (2+3), therefore

carrying only one functional copy of Pax6, and this may account

for this observation by itself, or could suggest a slight leakiness of

the CAGGCreERTM transgene to which Pax6flox/Pax6lacZ would be

more susceptible.

Five daily intraperitoneal injections of corn oil or Tamoxifen (in

corn oil) were administered, and animals were weighed daily at

this stage. Animals in all three groups experienced a similar weight

loss over this five day period (Figure 1C). Both control groups and

the CPTD6 experimentals recovered and had gained several

grams of body weight by 7 days after the last injection. The weight

gain continued through the second and subsequent weeks for all

control mice, however at 14 days after the last injection the

CPTD6 mice were losing weight again. This weight loss in the

CPTD6 mice continued until termination of the experiment 4

weeks after the last injection of Tamoxifen (Figure 1C).

Effect of Pax6 Inactivation on Glucose-handling
Non-fasting urine samples continued to be monitored from

Week 1 (day of final injection), at weekly intervals. None of the

control mice (Oil control and Tam control) had detectable levels of

glucose in their urine at any stage. In contrast at week 3, just over

two weeks after the last injection the CPTD6 mice presented with

a positive urine glucose test, with concentrations greater than 2%

(.11.1 mM; see Methods) which was maintained at week 4 and 5

(Figure 2A). Fasting blood glucose was measured at the beginning

of week 5 followed by a glucose tolerance test. The CPTD6 mice

presented with a mean elevated fasting blood glucose level of

23.4 mM compared with oil injected control mice with 5.9 mM

and tamoxifen injected control mice with 6.4 mM (Fig. 2, n= 5,

n = 12, n = 7, P,0.05) (Figure 2B, black bars). The elevated fasting

blood glucose was accompanied by an impaired ability to clear

glucose when challenged with glucose resulting in a 3 fold

increased area under the glucose tolerance test curve of CPTD6

mice as compared to all control mice (Figure 2D, n= 5, n= 19).

CPTD6 mice were also observed to drink and urinate more,

indicating the CPTD6 animals presented all classical symptoms of

diabetes: weight loss, polydypsia, polyuria, glycosuria and elevated

fasting blood glucose levels.

Immunohistochemical Analysis of Pancreas
All animals were sacrificed at the end of week 5 (i.e. 4 weeks

after the final tamoxifen injections) and their pancreata fixed and

analysed for expression of a number of pancreatic markers,

including several pancreatic transcription factors, endocrine

hormones and processing enzymes.

Pax6 expression was severely diminished. To assess the

efficiency of the Cre mediated inactivation of the Pax6 gene, the

first marker to be tested was Pax6 itself (Fig. 1D), revealing a loss of

detectable protein in most islet cells of the CPTD6 mice (n = 4).

Some residual expression was observed in a small number of

individual CPTD6 islet cells, while in controls (n = 4) clear nuclear

staining was observed in all islet cells. These data show that the

CreERTM protein was successfully activated by the tamoxifen

treatment in the large majority of islet cells, resulting in excision of

the floxed Pax6 allele and loss of Pax6 production from the

inactivated allele. DAPI staining of CPTD6 pancreata showed the

distinct organisation of endocrine cells into islet-like structures was

maintained, although many islets presented with a less organized,

round/oval structure compared to the more elongated architec-

ture seen in control islets.

Expression of endocrine hormones in CPTD6

islets. Immunohistochemical analysis revealed both insulin

(Figure 3A, B) and glucagon (Figure 3C, D) expression were

severely reduced in the CPTD6 animals. For both hormones the

number of expressing cells was much reduced, and co-staining

revealed altered islet architecture with a cells appearing in more

internal positions in the CPTD6 islet (Figure 3C, D). Control islets

show the normal islet architecture with b cells at the centre

surrounded by a mantle of a cells. A moderate reduction in the

number of somatostatin-expressing cells was also detected

(Figure 3E, F).

Expression of key pancreatic transcription

factors. Expression of Islet1 (Isl1), an important regulator for

pancreas development, showed no significant difference between

control and CPTD6 mice and confirmed that islet cells were still

present in the CPTD6 animals (Figure 4A, B). Similarly the

expression of Nkx2.2 appeared unaffected in the CPTD6 islets

(Figure 4C, D). In contrast, the adult b-cell marker Nkx6.1

(Figure 4E, F) was downregulated in the absence of Pax6.

Interestingly, Pdx1, which is required for pancreas development

and b-cell function, was also severely downregulated in the

CPTD6 animals with very few islets showing prominent levels of

Pdx1 expression (Figure 4G, H). As previous work has shown

a requirement for Pdx1 expression in adult b-cells for maintenance

of glucose sensing and the proinsulin-processing machinery [31],

we next analysed the status of some key components [31].

Analysis of additional key islet cell markers. Glut2

(Slc2a2), a glucose transporter that is required post-prandial to

sense glucose fluctuations, is expressed at the surface membrane of

adult b-cells. Glut2 expression was almost completely abolished in

(oil or tamoxifen injection) of all animals used in the study. Animals were sorted into control (oil only control or Tamoxifen control) or CPTD6
(CreERTM-floxed Pax6-Tamoxifen-Diabetic) groups. (C) Graph showing male mouse body weights from 4 weeks pre-treatment until 5 weeks post-
treatment, with a time-line of the procedure shown at the top. All animals exhibited healthy body weight prior to treatment. During the 5 day period
of daily injections all animals lost some weight, but recovered in the week following the injections. While control animals continued to gain weight
and were back to pre-treatment body weight at termination, CPTD6 animals began to lose weight again from the second week post-treatment
onwards until termination of the experiment. Data are shown as mean 6 SEM (Standard error of the mean). (D) Immunohistochemistry for Pax6 was
used to assess the efficiency of the Cre-mediated deletion of Pax6, by staining for the presence or absence of Pax6. Control animals show nuclear
Pax6 immuno-reactivity in the pancreatic islet cells. The CPTD6 islets show absence of Pax6 immuno staining in the large majority of cells, indicating
successful Cre-mediated inactivation of the Pax6 gene. Scale bar, 50 mm.
doi:10.1371/journal.pone.0054173.g001
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the CPTD6 animals compared with controls (figure 5A, B). Insulin

is processed from a larger precursor, proinsulin through a regulated

secretory pathway and stored in secretory granules in readiness for

secretion as active insulin. A number of proteins are required for

proinsulin processing into its active disulphide bond linked A and

B chains. Two of these, PC1/3 (Pcsk1) and PC2 (Pcsk2), act in

concert with additional proteins to cleave proinsulin at specific

dibasic residue junctions to produce equimolar amounts of active

insulin and C-peptide. Immunohistochemical analysis of PC1/3

(figure 5C, D) revealed that expression of this enzyme is strongly

reduced in the CPTD6 animals, although some cells within the

islet maintain high levels of PC1/3 expression. In contrast, PC2

expression does not appear to be affected (Figure 5E, F).

Exocrine pancreas. Gross histology of the exocrine pancreas

from CPTD6 mice suggested a slight difference from controls,

showing a less organised and looser architecture with fewer acinar

structures and a more prominent ductal network. Nevertheless, the

CPTD6 exocrine pancreas showed normal positive staining for

amylase expression (Figure 5G, H), presenting the same punctuate

expression pattern in acinar structures as control pancreata

(CPTD6, n= 4, controls, n = 4).

Strong upregulation of ghrelin in CPTD6 islets. In

contrast to the loss of classical hormone production in a, b and

d cells (Figure 6A, D, G, J, M, P), a large increase in ghrelin

positive cells was observed in CPTD6 islets. Ghrelin positive cells

are very rare or absent in a normal adult pancreas, as illustrated by

the controls studied here (Figure 6B, H, N), but the CPTD6 islets

Figure 2. Assessment of glucose handling in control and CPTD6 mice. (A) Urine glucose levels were tested weekly using Diastix (Bayer) test
sticks from week 0 (before first injection) to termination of the experiment (week 5). CPTD6 mice presented with glucose in their urine when tested 3
weeks post first injection. None of the control animals (tamoxifen- nor oil-injected controls) showed glucose in their urine at any time. (B) Fasting
blood glucose levels were normal in all three experimental groups in the week prior to the tamoxifen/oil injections (white bars). When tested again in
the final week of the experiment (start of week 5) CPTD6 mice presented with hyperglycaemia (black bars) (C). A glucose tolerance test performed in
the week before injection revealed slight glucose intolerance in CPTD6 mice compared to the control animals. (D) Glucose intolerance of the CPTD6
mice was exacerbated post injection. Data are shown as mean 6 SEM.
doi:10.1371/journal.pone.0054173.g002

Pax6 in Pancreatic Islet Cell Maintenance
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exhibit large numbers of ghrelin positive cells, located pre-

dominantly in the periphery of the islets (Figure 6E, K, Q). Co-

expression studies for ghrelin with insulin, glucagon or somato-

statin (Figure 6C, F, I, L, O, R) reveal that the ghrelin positive cells

do not express any of these three hormones, and should therefore

be classified as e cells. To obtain a quantitative measure of the

differences in the numbers of hormone producing cells in the

pancreatic islets of CPTD6 and control animals, the percentage of

hormone expressing cells per islet was determined. Hormone

expressing cells were identified by immunofluorescence and

counted relative to the total number of DAPI positive cells in

the islet. The average percentage of insulin positive cells per islet

was decreased from 72% in the controls to 19% in CPTD6

animals, while the percentage of glucagon expressing cells

decreased from 11.4% to 5.3%. A more modest change was seen

in somatostatin positive cell numbers (11.6% in controls versus

9.5% in CPTD6). In contrast the percentage of ghrelin expressing

cells showed a large increase from 0.6% in controls to 20.6% in

CPTD6 pancreatic islets.

Discussion

The developmental regulator Pax6 has a well-established role in

the embryonic development of the endocrine pancreas and the

correct differentiation of the different cell types in the islets of

Langerhans. The data presented here show that there is

a continued requirement for Pax6 in the adult to maintain a fully

functioning endocrine pancreas. Pax6 is essential for development

of the eye and brain, and homozygous loss of function results in

neonatal lethality, precluding the analysis of the potential

importance of Pax6 gene function in the tissues in which it

Figure 3. Expression analysis of pancreatic endocrine hor-
mones. Images show immuno-stainings for insulin (A, B), glucagon (C,
D), and somatostatin (E, F) in sections through the pancreas of control
(A, C, E) and CPTD6 (B, D, F) mice sacrificed 5 weeks post-injections.
Insulin expression is almost completely abolished in CPTD6 islets
compared with control islets (A, B). The number of cells staining
positive for glucagon is also decreased in the CPTD6 islets compared to
controls (C, D). Somatostatin expression is more moderately reduced in
the CPTD6 islets with most CPTD6 islets showing fewer positive cells
compared to the controls. (E, F). Images are representative of at least
four animals from each group. Scale bar, 50 mm.
doi:10.1371/journal.pone.0054173.g003

Figure 4. Expression analysis of key transcription factors.
Immunohistochemistry was performed in control (A, C, E, G, I, K) and
CPTD6 (B, D, F, H, J, L) mice. (A, B) Nuclear expression of the pancreatic
islet marker Islet 1 (Isl1) is retained in CPTD6 mice, showing that the islet
cells are present. (C,D) Expression of Nkx2.2 is also unaffected in CPTD6
mice. (E, F) In contrast expression of Nkx6.1 is reduced in Pax6 deficient
cells. (G, H) The nuclear expression of the transcription factor Pdx1 is
lost in CPTD6 mice. Images are representative of at least four animals
from each group. Scale bars, 50 mm.
doi:10.1371/journal.pone.0054173.g004
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remains expressed in adulthood. To bypass this problem we have

studied the effect of loss of Pax6 in adult mice in a conditional

Pax6 deletion model crossed with a tamoxifen inducible Cre

deletor strain. In this way we were able to remove most functional

Pax6 in mice that had lived a healthy life for the 6 months leading

up to the experiments. Remarkably the deletion of Pax6 led to

a rapid development of diabetic symptoms and deterioration of

health in the homozygous Pax6 conditional mice that were Cre

positive and treated with tamoxifen (named CPTD6 mice).

Diabetic symptoms were not found in any control animals, except

in one of the heterozygous Pax6 conditional, Cre-positive

tamoxifen treated females, supporting the possibility of increased

diabetes susceptibility in PAX6 heterozygous aniridia patients

[20,27,32]. In the four weeks following Pax6 inactivation no

obvious neurological, olfactory or eye abnormalities were

observed, but more detailed histological analysis of some of these

tissues is in progress.

We show that production of the endocrine hormones insulin,

glucagon and somatostatin is strongly reduced in response to the

adult stage inactivation of Pax6. The direct regulation of these

hormones by Pax6 in the developing and neonatal pancreas is

well-established [7,12], and specific Pax6 binding sites have been

described in the regulatory regions of these genes [7,12,33,34].

Pax6 expression in adult islets of Langerhans has also been

documented [19,21], and is confirmed by our data, which

demonstrates that the continued presence of Pax6 is essential for

endocrine hormone production. There is increasingly convincing

evidence that glucose handling and insulin production are also

disturbed in adult rodents and humans who carry heterozygous

PAX6 mutations [19,20,21,28]. This suggests that not only is

PAX6 essential for pancreatic endocrine maintenance, but that

correct dosage of the protein is required for this role, as it is for

some other transcription factors associated with diabetes, such as

HNF1A and HNF4A, in which heterozygous mutations have been

found in a significant portion of MODY cases [35].

The islet markers Isl1 and Nkx2.2 retain a normal expression

pattern in the Pax6 deleted pancreas by immunohistochemistry,

indicating there is no gross morphological change in the islets

following Pax6 removal. Interestingly, we observe loss of Pdx1 and

Nkx6.1 expression in the Pax6 deleted pancreata, indicating Pax6

acts upstream of these genes in adult pancreas. In contrast, during

embryonic development Pdx1 acts upstream of Pax6 [9,36], and

no Pax6 expression is detected in the pancreas of Pdx1 knock-out

mice [9]. Developmental regulators are well known to cross-

regulate in reciprocal feedback loops in many systems and, while

at this stage it is unclear whether Pdx1 is a direct Pax6 target, Pax6

and Pdx1 may be tightly connected through reciprocal wiring into

the gene regulatory network for pancreas development and

maintenance [37].

Previous work has shown that loss of Pdx1 expression in adult

beta-cells disrupts key proteins involved in glucose sensing,

including Glut2 (Slc2a2) and the proinsulin processing machinery,

PC1/3 and PC2 [31]. Loss of Pax6 expression in the adult

pancreas, as shown here, also affects these functions. Mice with

a Glut2 null mutation develop diabetes [38], demonstrating the

requirement for this sugar transporter. It is unclear whether the

near total loss of Glut2 expression in our experimental animals is

due directly to loss of Pax6 activity or as an indirect consequence

of losing Pdx1 expression. Gosmain et al identified putative

consensus Pax6 binding sites upstream of the Glut2 start site by

in silico prediction, suggesting Pax6 could regulate Glut2 directly,

but no binding was found by EMSA [34], and Pax6 binding site

predictions by Hidden Markov Modelling did not reveal Glut2 as

a target gene [39]. Chromatin immunoprecipitation studies with

Pax6 and Pdx1 antibodies in pancreatic islet cells will be required

to resolve this issue.

Another feature of type 2 diabetes is hyperpronisulinaemia [40]

which often reflects a defect in the proinsulin processing pathway.

Prohormone convertases PC1/3 and PC2 together with Carboxy-

peptidase E catalyse this cleavage sequence [41]. Expression levels

of PC1/3 were severely reduced in Pax6 null animals, but PC2

was less affected, a situation reminiscent to that observed in the

FRID1 mice and conditional Pdx1 null mice [31], and this

suggests that Pax6 may directly regulate components of the insulin

processing machinery, or could do so indirectly through regulation

of Pdx1 and/or components of the FGF signaling family. Our

Figure 5. Glucose sensing, hormone processing and the
exocrine compartment. (A, B) Expression of the glucose transporter
Glut2 (Slc2a2), localised at the endocrine cell surface, is lost in CPTD6
mice. (C, D) Cytoplasmic expression of the prohormone processing
factor PC1/3 (Pcsk1) is absent in CPTD6 mice. (E, F). Expression of the
processing factor PC2 (Pcsk2) and (G, H) the exocrine enzyme amylase
are not affected.
doi:10.1371/journal.pone.0054173.g005
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in vivo observations are in agreement with data obtained in a recent

study using Pax6 RNAi in a rat b-cell model [34], although we

observed little, or no difference in PC2 expression, while

a moderate reduction was reported in the rat b-cell model.

Aniridia patients with PAX6 mutations have been reported to have

elevated proinsulin levels, even when not frankly diabetic; and

PC1/3 levels are reduced in heterozygous Pax6 mutant mice, with

some evidence for direct binding of Pax6 to upstream elements of

PC1/3 [20,42]. In contrast, it is suggested that PC2 may only be

an indirect target of Pax6 [12,43], but it is interesting to note that

PC2 expression was significantly reduced in one Pax6 mutant

mouse line [44].

In contrast to the near complete loss in insulin expression,

severe reduction in glucagon- and moderate reduction in

somatostatin positive cells, we observed a striking increase in

ghrelin-expressing cells. The appearance of ghrelin producing cells

in the Pax6-null islets of the CPTD6 mice suggests that Pax6 may

be implicated in the control of ghrelin expression in the adult

pancreas. Reduction in insulin and glucagon expressing cells has

also been observed when Pax6 is inactivated during development,

both in Pax6 mutants and in a pancreas specific knock-out of the

gene [44,45]. Dames et al. also observed an increase in ghrelin

positive cells and a quantitatively similar reduction in glucagon

positive cells and suggested a developmental lineage switch of

alpha to epsilon cells in the absence of Pax6. It is difficult to say

whether the ghrelin-positive cells, observed when Pax6 is turned

off in adulthood, are derived by transdifferentiation from alpha

cells. The majority of the newly ghrelin-expressing cells are

positioned at the periphery of the islet, like alpha cells, but further

analysis is required to determine the origin of these cells. Ghrelin is

predominantly expressed in the stomach in adulthood and is

involved in regulating food intake, hepatic glucose production and

preventing glucose disposal in muscle and adipose tissue [46]. The

predicted increase in ghrelin production, coupled with the marked

reduction in insulin expression, may explain the rapid onset of

diabetes in our animals [47]. Animals in which either the ghrelin

gene or the ghrelin receptor has been silenced have improved

glucose tolerance [48,49,50], indicating a distinct role for ghrelin

in glucose homeostasis.

Figure 6. Upregulation of Ghrelin expression in CPTD6 islets. Immunohistochemistry for ghrelin (B, E, H, K, N, Q) was performed in
combination with insulin (A, D), glucagon (G, J), and somatostatin (M, P). Merged images with DAPI nuclear counter-staining are shown (C, F, I, L,
O, R) on pancreata from control (A, B, C, G, H, I, M, N, O) and CPTD6 (D, E, F, J, K, L, P, Q, R) mice. Levels of insulin and glucagon expression are
markedly reduced or lost in the majority of islet cells of CPTD6 mice in comparison with the controls, while the number of somatostatin positive cells
appears more moderately reduced. Very few, if any, ghrelin positive cells can be found in the islets of control adult mice (B, C, H, I, N, O). In contrast,
strong staining is observed in many cells of the CPTD6 pancreata, located predominantly around the periphery of the islets. Images are representative
of at least four animals from each group. Scale bars, 50 mm. (S, T, U, V). Quantification of the relative numbers of hormone expressing cells in the islets
of Langerhans of control and CPTD6 animals shown as the percentage of immunofluorescence positive cells per total number of DAPI positive cells.
(S) Insulin producing cells (control 72% .19% CPTD6), (T) Glucagon producing cells (control 11.4% .5.3% CPTD6) (U) Somatostatin producing cells
(control 11.6% .9.5% CPTD6), and (V) Ghrelin producing cells (control 0.6% .20.6% CPTD6).
doi:10.1371/journal.pone.0054173.g006
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Our studies add an adult requirement for Pax6 to its well-known

developmental role [4,5]. The scale of its many pleiotropic

functions is reflected in the complex cis-regulatory architecture of

the Pax6 genomic locus [51–55]. While the essential role of Pax6

for embryonic development and post-natal viability obscures its

role in adult maintenance of target organs, and its potential

involvement in adult-onset diseases such as diabetes, this role

would be unmasked by mutations or variations in the cis-elements

that drive Pax6 expression in these adult tissues. Currently the cis-

elements required for expression in the adult pancreas are

unknown, but following our demonstration of the essential role

for Pax6 in pancreas homeostasis, their identification has gained

greater importance. Two elements located upstream of the Pax6

P0 promoter are known to drive expression in the pancreas during

embryonic development [51,53,54], but it is unknown if these

remain active during adult life, and adult expression may well

depend on further cis-elements in the locus. Sequence variation in

these elements could constitute a risk factor for diabetes [42].

In conclusion, we show that loss of Pax6 in the adult islet affects

the expression of multiple target genes involved in the mainte-

nance of pancreatic endocrine function and glucose handling, and

results in the rapid appearance of diabetic symptoms in previously

healthy mice.
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