1,608 research outputs found
Signatures of Interchange Reconnection: STEREO, ACE and Hinode Observations Combined
Combining STEREO, ACE and Hinode observations has presented an opportunity to
follow a filament eruption and coronal mass ejection (CME) on the 17th of
October 2007 from an active region (AR) inside a coronal hole (CH) into the
heliosphere. This particular combination of `open' and closed magnetic
topologies provides an ideal scenario for interchange reconnection to take
place. With Hinode and STEREO data we were able to identify the emergence time
and type of structure seen in the in-situ data four days later. On the 21st,
ACE observed in-situ the passage of an ICME with `open' magnetic topology. The
magnetic field configuration of the source, a mature AR located inside an
equatorial CH, has important implications for the solar and interplanetary
signatures of the eruption. We interpret the formation of an `anemone'
structure of the erupting AR and the passage in-situ of the ICME being
disconnected at one leg, as manifested by uni-directional suprathermal electron
flux in the ICME, to be a direct result of interchange reconnection between
closed loops of the CME originating from the AR and `open' field lines of the
surrounding CH.Comment: 13 pages, 13 figures, accepted Annales Geophysica
The Closest Damped Lyman Alpha System
A difficulty of studying damped Lyman alpha systems is that they are distant,
so one knows little about the interstellar medium of the galaxy. Here we report
upon a damped Lyman alpha system in the nearby galaxy NGC 4203, which is so
close (v_helio = 1117 km/s) and bright (B_o = 11.62) that its HI disk has been
mapped. The absorption lines are detected against Ton 1480, which lies only
1.9' (12 h_50 kpc) from the center of NGC 4203. Observations were obtained with
the Faint Object Spectrograph on HST (G270H grating) over the 2222-3277
Angstrom region with 200 km/s resolution. Low ionization lines of Fe, Mn, and
Mg were detected, leading to metallicities of -2.29, -2.4, which
are typical of other damped Lyman alpha systems, but well below the stellar
metallicity of this type of galaxy. Most notably, the velocity of the lines is
1160 +- 10 km/s, which is identical to the HI rotational velocity of 1170 km/s
at that location in NGC 4203, supporting the view that these absorption line
systems can be associated with the rotating disks of galaxies. In addition, the
line widths of the Mg lines give an upper limit to the velocity dispersion of
167 km/s, to the 99% confidence level.Comment: 4 pages LaTeX, including 1 figure and 1 table, uses emulateapj.sty.
Accepted for publication by Astrophysical Journal Letter
Simultaneous multi-band detection of Low Surface Brightness galaxies with Markovian modelling
We present an algorithm for the detection of Low Surface Brightness (LSB)
galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in
Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be
applied simultaneously to different bands. It segments an image into a
user-defined number of classes, according to their surface brightness and
surroundings - typically, one or two classes contain the LSB structures. We
have developed an algorithm, called DetectLSB, which allows the efficient
identification of LSB galaxies from among the candidate sources selected by
MARSIAA. To assess the robustness of our method, the method was applied to a
set of 18 B and I band images (covering 1.3 square degrees in total) of the
Virgo cluster. To further assess the completeness of the results of our method,
both MARSIAA, SExtractor, and DetectLSB were applied to search for (i) mock
Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey
(NGVS) gri-band subimages and (ii) Virgo LSB galaxies identified by eye in a
full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20%
more mock LSB galaxies and ~40% more LSB galaxies identified by eye than
SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely
unsupervised pipeline, a completeness of 90% is reached for sources with r_e >
3" at a mean surface brightness level of mu_g=27.7 mag/arcsec^2 and a central
surface brightness of mu^0 g=26.7 mag/arcsec^2. About 10% of the false
positives are artifacts, the rest being background galaxies. We have found our
method to be complementary to the application of matched filters and an
optimized use of SExtractor, and to have the following advantages: it is
scale-free, can be applied simultaneously to several bands, and is well adapted
for crowded regions on the sky.Comment: 39 pages, 18 figures, accepted for publication in A
Initiation of coronal mass ejections by sunspot rotation
We study a filament eruption, two-ribbon flare, and coronal mass ejection (CME) that occurred in NOAA Active Region 10898 on 6 July 2006. The filament was located South of a strong sunspot that dominated the region. In the evolution leading up to the eruption, and for some time after it, a counter-clockwise rotation of the sunspot of about 30 degrees was observed. We suggest that the rotation triggered the eruption by progressively expanding the magnetic field above the filament. To test this scenario, we study the effect of twisting the initially potential field overlying a pre-existing flux-rope, using three-dimensional zero-β MHD simulations. We first consider a relatively simple and symmetric system, and then study a more complex and asymmetric magnetic configuration, whose photospheric-flux distribution and coronal structure are guided by the observations and a potential field extrapolation. In both cases, we find that the twisting leads to the expansion of the overlying field. As a consequence of the progressively reduced magnetic tension, the flux-rope quasi-statically adapts to the changed environmental field, rising slowly. Once the tension is sufficiently reduced, a distinct second phase of evolution occurs where the flux-rope enters an unstable regime characterised by a strong acceleration. Our simulations thus suggest a new mechanism for the triggering of eruptions in the vicinity of rotating sunspots
The Arecibo L-band Feed Array Zone of Avoidance Survey I: Precursor Observations through the Inner and Outer Galaxy
The Arecibo L-band Feed Array (ALFA) is being used to conduct a low-Galactic
latitude survey, to map the distribution of galaxies and large-scale structures
behind the Milky Way through detection of galaxies' neutral hydrogen (HI) 21-cm
emission. This Zone of Avoidance (ZOA) survey finds new HI galaxies which lie
hidden behind the Milky Way, and also provides redshifts for partially-obscured
galaxies known at other wavelengths. Before the commencement of the full
survey, two low-latitude precursor regions were observed, totalling 138 square
degrees, with 72 HI galaxies detected. Detections through the inner Galaxy
generally have no cataloged counterparts in any other waveband, due to the
heavy extinction and stellar confusion. Detections through the outer Galaxy are
more likely to have 2MASS counterparts. We present the results of these
precursor observations, including a catalog of the detected galaxies, with
their HI parameters. The survey sensitivity is well described by a flux- and
linewidth-dependent signal-to-noise ratio of 6.5. ALFA ZOA galaxies which also
have HI measurements in the literature show good agreement between our
measurements and previous work. The inner Galaxy precursor region was chosen to
overlap the HI Parkes Zone of Avoidance Survey so ALFA performance could be
quickly assessed. The outer Galaxy precursor region lies north of the Parkes
sky. Low-latitude large-scale structure in this region is revealed, including
an overdensity of galaxies near l = 183 deg and between 5000 - 6000 km/s in the
ZOA. The full ALFA ZOA survey will be conducted in two phases: a shallow survey
using the observing techniques of the precursor observations, and also a deep
phase with much longer integration time, with thousands of galaxies predicted
for the final catalog.Comment: 26 pages, 7 figures, 2 tables, Astronomical Journal accepte
Kinematic Evidence of Minor Mergers in Normal Sa Galaxies: NGC3626, NGC3900, NGC4772 and NGC5854
BVRI and H-alpha imaging and long-slit optical spectroscopic data are
presented for four morphologically normal and relatively isolated Sa galaxies,
NGC3626, NGC3900, NGC4772 and NGC5854. VLA HI synthesis imaging is presented
for the first 3 objects. In all 4 galaxies, evidence of kinematic decoupling of
ionized gas components is found; the degree and circumstances of the distinct
kinematics vary from complete counterrotation of all of the gas from all of the
stars (NGC3626) to nuclear gas disks decoupled from the stars (NGC5854) to
anomalous velocity central gas components (NGC3900 and NGC4772). In the 3
objects mapped in HI, the neutral gas extends far beyond the optical radius,
R_HI/R_25 > 2. In general, the HI surface density is very low and the outer HI
is patchy and asymmetric or found in a distinct ring, exterior to the optical
edge. While the overall HI velocity fields are dominated by circular motions,
strong warps are suggested in the outer regions. Optical imaging is also
presented for NGC 4138 previously reported by Jore et al. (1996) to show
counterrotating stellar components. The multiwavelength evidence is interpreted
in terms of the kinematic "memory" of past minor mergers in objects that
otherwise exhibit no morphological signs of interaction.Comment: 26 pages, 15 figures, accepted for publication in Astron. J.,
postscript figures available at
ftp://culebra.tn.cornell.edu/pub/haynes/figures.tar.g
NGC 4569: recent evidence for a past ram pressure stripping event
Deep 21-cm HI line observations of the Virgo cluster spiral galaxy NGC 4569
have been obtained with the VLA in its D configuration and with the Effelsberg
100-m telescope. A low surface density arm was discovered in the west of the
galaxy, whose velocity field is distinct from that of the overall disk
rotation. The observed gas distribution, velocity field, and velocity
dispersion are compared to snapshots of dynamical simulations that include the
effects of ram pressure. Two different scenarios were explored: (i) ongoing
stripping and (ii) a major stripping event that took place about 300 Myr ago.
It is concluded that only the post-stripping scenario can reproduce the main
observed characteristics of NGC 4569. It is not possible to determine if the
gas disk of NGC 4569 had already been truncated before it underwent the ram
pressure event that lead to its observed HI deficiency.Comment: 13 pages, 15 figures. Accepted for publication in A&
Commission 10: Solar Activity
Commission 10 aims at the study of various forms of solar activity, including networks, plages, pores, spots, fibrils, surges, jets, filaments/prominences, coronal loops, flares, coronal mass ejections (CMEs), solar cycle, microflares, nanoflares, coronal heating etc., which are all manifestation of the interplay of magnetic fields and solar plasma. Increasingly important is the study of solar activities as sources of various disturbances in the interplanetary space and near-Earth “space weather”.
Over the past three years a major component of research on the active Sun has involved data from the RHESSI spacecraft. This review starts with an update on current and planned solar observations from spacecraft. The discussion of solar flares gives emphasis to new results from RHESSI, along with updates on other aspects of flares. Recent progress on two theoretical concepts, magnetic reconnection and magnetic helicity is then summarized, followed by discussions of coronal loops and heating, the magnetic carpet and filaments. The final topic discussed is coronal mass ejections and space weather.
The discussions on each topic is relatively brief, and intended as an outline to put the extensive list of references in context.
The review was prepared jointly by the members of the Organizing Committee, and the names of the primary contributors to the various sections are indicated in parentheses
Evolution and decay of an active region: Magnetic shear, flare and CME activity
Desde abril de 1996 y hasta febrero de 1997, se observó en el disco solar un complejo de actividad. Este complejo exhibió su nivel más alto de actividad durante el nacimiento de la región activa (AR) 7978. Nuestro análisis se extiende a lo largo de seis rotaciones solares, desde la aparición de AR 7978 (julio de 1996) hasta el decaimiento y dispersión de su flujo (noviembre de 1996). Los datos en varias longitudes de onda provistas por los instrumentos a bordo del Solar and heliospheric Observatory (SOHO) y del satélite japonés Yohkoh, nos permiten seguir la evolución de la región desde la fotosfera hasta la corona. Usando los
magnetogramas del disco completo obtenidos por el Michelson Doppler Imager (SOHO/MDI) como condiciones de contorno, calculamos el campo magnético coronal y determinamos su apartamiento de la potencialidad ajustando las líneas de campo calculadas a los arcos observados en rayos X blandos. Discutimos la evolución de la torsión del campo magnético coronal y su probable relación con la actividad observada en forma de eyecciones de masa coronal (CMEs) y fulguraciones.An activity complex was observed on the solar disk between April, 1996 and February, 1997 that reached its highest level of activity during the birth of AR 7978. Our observations extend over six solar rotations, from the emergence of AR 7978 (July 1996) until the decay and dispersion of its flux (November 1996). Multi-wavelength observations, provided by instruments aboard the Solar and Heliospheric Observatory (SOHO) and the Japanese spacecraft Yohkoh, follow the evolution of the region from the photosphere to the corona. Using full disk magnetograms obtained by the Michelson Doppler Imager (SOHO/MDI) as boundary condition, we calculate the coronal magnetic field and determine its shear by fitting the computed field lines to the observed soft X-ray loops. We discuss the evolution of the coronal field shear and its probable relation to flare and coronal mass ejection activity.Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Thompson, B.. National Aeronautics And Space Administration; Estados UnidosFil: Plunkett, S. P.. Spece Sciences División. Naval Research Laboratory; Estados UnidosFil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Aulanier, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Franci
Roof type classification in aerial imagery using convolutional neural networks:exploring the exploitation of convolutional features using feature coding and random forests
- …
