
 Eindhoven University of Technology

MASTER

Roof type classification in aerial imagery using convolutional neural networks
exploring the exploitation of convolutional features using feature coding and random forests

van Driel, B.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/39c8ebcb-d3b8-40bc-8db5-275614c1c1b3

Department of Industrial Engineering & Innovation Management
Information Systems Group

Roof Type Classification in Aerial
Imagery Using Convolutional Neural

Networks

Exploring the exploitation of convolutional features using feature
coding and random forests

Bart van Driel

BSc in Economics and Business Economics

In partial fulfilment of the requirements for the degree of
Master of Science in Operations Management and Logistics

Supervisors:
Dr. Anna Wilbik (TU/e)

Dr. Yingqian Zhang (TU/e)
Dr. Laura Genga (TU/e)
Erlijn Linskens (Pipple)

Daniël Kersbergen (Netherlands Red Cross - 510)

Eindhoven, March 2019

Eindhoven University of Technology
School of Industrial Engineering
Series Master Theses Operations Management and Logistics

Keywords: Image Classification, Roof Type, Remote Sensing, Convolutional Neural Networks,
Feature Coding, Random Forests

ii

Abstract

Accurate, up-to-date and complete data is essential for efficient and effective humanitarian aid.
For example, building characteristics can be an important variable in damage prediction models.
This work investigates the classification of roof types (i.e. shape and material) in aerial imagery
of Sint Maarten using Convolutional Neural Networks (CNNs). Additionally, the UC-Merced
data set is used as benchmark data set. Two strategies are presented trying to improve the
classification performance of fine-tuned CNNs. In the first approach, features are extracted from
the last convolutional layer and encoded using four coding algorithms and classification is done by
a linear Support Vector Machine. The second approach extracts the features from the last fully
connected layer and classification is done by Random Forests. The best performing fine-tuned
CNN, VGG-16, achieved an accuracy of 88% and 58% on respectively the roof shape and roof
material data sets. None of the feature coding schemes significantly improved the performance
of the fine-tuned VGG-16. Only on the roof material data set, Random Forests showed a small
improvement over the fine-tuned VGG-16.

iii

Executive Summary

Introduction

Accurate, up-to-date and complete data is essential for efficient and effective humanitarian aid. For
example, detailed maps, including the outlines and characteristics of buildings, can be important
for damage prediction models to enhance the humanitarian aid in disaster response. Currently,
such maps are obtained by the efforts of many volunteers, which remotely trace buildings, roads,
and additional information in satellite imagery. However, the process of acquiring these maps is
time consuming, labour intensive, and the quality depends heavily on the skills of the volunteers.
Thus, a more swift, efficient, and reliable solution for this problem is desired.

The Netherlands Red Cross data team, 510, is investigating to (partly) automate the mapping
using aerial imagery and machine learning. This investigation is split in two research directions:
one project focuses on the automatic detection of buildings, and another on automatic classification
of building characteristics in remotely sensed imagery. This research will explore the latter topic.
More specifically, it investigates the use of state-of-the-art Convolutional Neural Networks (CNNs)
for classification of roof types in aerial imagery of Sint Maarten.

Recent years, CNNs pre-trained on large image data bases have shown outstanding results on
other data sets. Fine-tuning the pre-trained networks on the target data set tends to give the best
results. In the first approach, features are extracted from the last convolutional layer and encoded
using four coding algorithms and classification is done by a linear Support Vector Machine (SVM).
The second approach extracts the features from the last fully connected layer and classification is
done by Random Forests. These strategies are visualised in figure 1.

v

Figure 1: Illustration of the proposed scenarios

Data & Experimental Setup

Three data sets are used to evaluate the models. Two data sets are obtained from aerial imagery
of Sint Maarten and detailed building information from OpenStreetMap. Individual buildings are
clipped from aerial imagery. The OpenStreetMap data contains characteristics of the roofs of the
buildings, i.e. roof shape and roof material. The roof shape is either flat or hipped. The roof
material is either concrete, metal or roof tiles. The roof shape and roof material data set consist
of respectively 8,349 and 11,661 images, where both data sets exhibit class imbalance. The third
data set used is the UC-Merced data set, which serves as a benchmark data set. The data set
contains 2100 aerial images evenly distributed over 21 classes.

For the Sint Maarten data sets, only 10% of the total data is stratified sampled as train set.
This process is repeated 10 times, resulting in 10 different splits. For the UC-Merced data set, the
same split strategy is used as in other works, which is a stratified 5-fold cross validation. First,
three pre-trained networks (i.e. VGG-16, InceptionV3, Xception) are fine-tuned on the the train
set, where 30% of the train set is used as validation set. Subsequently, the best performing network
is used as feature extractor for the proposed approaches.

The four coding algorithms used are BOW, VLAD, LLC and IFK. Due to computational
limitations, no parameter tuning is done for these algorithms and the hyper-parameters are set
based on previous works. The number of clusters in the K-means in BOW, VLAD, and LLC are
set to respectively 1000, 100 and 100. The number components in the Gaussian Mixture Model
in IFK is set to 100.

The hyper-parameters of Random Forests are tuned via Random Search with 3 folds and 60
draws. No parameter tuning is done for the linear SVM, which parameters are set as described in
other works.

vi

Results & Discussion

Overall, VGG-16 achieves the best results on the data sets and is chosen as feature extractor for
the proposed methods. None of the feature coding schemes significantly improved the performance
of the fine-tuned VGG-16. Only on the roof material data set, Random Forests showed a small
improvement over the fine-tuned VGG-16.

The imbalanced classes in the data sets led to even more skewed predictions. Figure 2 shows
the confusion matrices of the roof shape and the roof material data sets. The precision is relatively
balanced, i.e. 0.88/0.87 and 0.70/0.71/0.63 for respectively the roof shape and roof material data
set. The class imbalance is more visible in the recall scores, as indicated by the diagonal values in
the confusion matrices. This skewness can be attributed to the optimisation on accuracy, which
only takes the amount of correctly predicted samples into account, ignoring per-class performance.
This skewness can be corrected, but will cost in terms of accuracy. Increasing the amount of
training data has a positive effect on the performance of the CNN. However, this effect diminishes
over the amount of data already in the train data set.

(a) Shape (b) Material

Figure 2: Confusion matrices of VGG-16 on the (a) roof shape and (b) roof material data set

The fine-tuned VGG-16 achieved a mean accuracy of 90% and the SVM-CNN combination
achieved an mean accuracy of 92%. Similar setups in other works achieved higher mean accuracies.
A number of reasons could be the cause of this difference. First, the choice of the deep learning
framework might have affected the performance of the models. Supposedly equivalent pre-trained
networks in Keras and Caffe result in different classification performance. Secondly, the SVM
implementation in the other works could be different. At last, several hyper-parameters during
training of the network could be different. However, in the absence of publicly available code, it
is difficult to point out the underlying cause of this difference.

Conclusion

Future coding did not improve over the base line, the fine-tuned VGG-16. The other strategy,
convolutional features in combination with random forests, showed only a slight improvement on
the roof material data set. Both strategies are more complex than conventional Convolutional
Neural Network (CNN) classification pipe lines, as they introduce extra steps (i.e. feature coding
and classification). Hence, based on the results presented in this work, the potential benefits (i.e.
increased classification performance) of experimenting with such pipelines do not outweigh the
disadvantages (i.e. more complex pipe line, extra computation time).

vii

The classification of the roof types is partly successful. Classification of the roof shapes is of
satisfactory quality, as the accuracy is higher than the desired 85% (i.e. 88%). Classification of
the roof material is more problematic, as the achieved accuracy is only 69%.

The key factor in the success of classifying building characteristics is data. Potentially, CNNs
can outperform humans in image classification tasks, but this depends very much on the quantity
and quality of the data. Additionally, it is important to have a high quality test set for evaluation
purposes which is a fair representation of the area of interest.

Therefore, three future research directions are denoted which aim to improve the quality or
quantity of the data. First, CNNs can be used to enhance the resolution of imagery. Secondly,
research should be conducted in how to efficiently and effectively label large data sets. At last,
capturing walls of building in aerial imagery is still problematic and requires more research before
it can be implemented in the future.

viii

Preface

This report marks the end of my life as a student. In a period of six and a half years, I studied
various subjects at four universities in three different countries and worked with a very diverse
group of people. While the research presented in this work is conducted in the past 6 months, it
is a product of all experiences over the past years. This process would not have been the same
without the support of others.

First, I would like to thank my direct supervisors: Daniël, Erlijn and Anna. Daniël, your
technical expertise and domain knowledge helped me a lot during execution of this project. Er-
lijn, your guidance and our discussions forced me to evaluate the decisions I made and thereby
improving the overall quality of my work. Anna, your comments helped me a lot writing and
structuring not only this thesis, but also my literature review and research proposal, which was all
new to me. I feel lucky to have had three supervisors who always were willing to free up time for
regular meetings, which I enjoyed and helped to bring this project to an successful end. Further,
I would like to thank Yingqian for her comments on draft versions of my research proposal and
thesis.

The last years I tried a lot of new things, which was not always the easiest path. I would like
to thank my friends for their help in finding my way. Many of the experiences would not have
been so joyful and valuable, or would not even have happened, without the help of you all.

At last, I would like to thank my family. Katja, you were always willing to listen to my
frustrations. You helped me put things into perspective whenever things were not working as
I wanted. Marieke, I admire your perseverance and resilience in everyday life. You inspire me
to push through whenever life gets difficult. Mom and dad, I feel privileged to have had your
unconditional support during my studies. I had the freedom to make my own choices and was
able to explore many opportunities, for which I am grateful. Thank you.

Bart van Driel

ix

Contents

Contents xi

Glossary xiv

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Research Questions . 3

1.2 Methodology . 3

1.3 Outline . 4

2 Background Information 7

2.1 Related Work . 7

2.2 Convolutional Neural Network . 8

2.2.1 Convolutional Layers . 9

2.2.2 Pooling Layers . 10

2.2.3 Fully Connected Layers . 10

2.3 Feature Encoding . 11

2.3.1 Bag Of visual Words . 11

2.3.2 Vector of Locally Aggregated Descriptors 12

2.3.3 Locality-constrained Linear Coding . 12

2.3.4 Improved Fisher Kernel . 12

2.4 Classifiers . 13

2.4.1 Support Vector Machine . 13

2.4.2 Random Forests . 14

xi

CONTENTS

3 Descriptions of Data Sets 17

3.1 Sint Maarten . 17

3.1.1 Data Sources . 17

3.1.2 Description . 18

3.2 UC-Merced . 20

3.3 Data Preparation & Augmentation . 21

4 Experimental Setup 23

4.1 Experimental Protocol . 24

4.2 Model & Parameter Selection . 24

4.2.1 Pre-trained Convolutional Neural Networks 24

4.2.2 Encoding . 26

4.2.3 Classification . 27

4.3 Background on Evaluation Metrics . 28

4.3.1 Performance Metrics . 28

4.3.2 Statistical Tests . 29

4.4 Implementation Details . 31

5 Results 33

5.1 Pre-trained networks . 33

5.2 Feature coding . 35

5.3 Classifiers . 37

6 Discussion 39

6.1 Exploitation of CNN features . 39

6.2 Per data set evaluation . 41

6.2.1 Sint Maarten . 41

6.2.2 UC-Merced . 44

7 Practical Implications 47

8 Conclusion 51

8.1 Conclusions . 51

8.2 Limitations . 53

8.3 Future Research . 53

xii

CONTENTS

Bibliography 54

Appendix 59

A Pre-trained networks available in Keras 59

B Weighted vs. Non-weighted training 60

C Architectures of Convolutional Neural Networks 61

C.1 VGG-16 . 61

C.2 InceptionV3 . 61

C.3 Xception . 66

D Complete results per data set 69

D.1 Roof shape . 69

D.2 Roof Material . 71

D.3 UC-Merced . 73

E Complete results significance tests 79

E.1 Networks . 79

E.2 Coding . 80

E.3 Classifiers . 81

F Random Search Optimal Parameters 82

G Pre-trained CNNs as Feature Extractor 84

xiii

Glossary

ANN Artificial Neural Network. xiii, 8, 9

BOW Bag Of visual Words. xiii, 2, 8, 11–13, 26, 36, 39, 51

CNN Convolutional Neural Network. vii, xiii, 2, 3, 7–9, 11, 13, 21, 23–27, 31, 39, 41, 46, 48,
51–53

CRISP-DM Cross Industry Standard Process for Data Mining. xiii, 3, 4, 49, 52

FCN FCN. xiii

FN False Negative. xiii, 28, 43

FP False Positive. xiii, 28, 43

FV Fisher Vector. xiii, 12, 13

GMM Gaussian Mixture Model. xiii, 12, 26

IFK Improved Fisher Kernel. xiii, 8, 12, 13, 26, 36, 41, 51

LLC Locality-constrained Linear Coding. xiii, 8, 12, 13, 26, 51

MLP Multi Layer Perceptron. xiii

NLRC Netherlands Red Cross. xiii, 2, 47, 51

RF Random Forests. xiii, 7, 8, 13–15, 21, 27, 37, 41, 51–53

SVM Support Vector Machine. xiii, 2, 7, 8, 13, 14, 21, 23, 26, 27, 35, 37, 41, 44, 46, 48, 51–53

TN True Negative. xiii, 28, 43

TP True Positive. xiii, 28, 43

VLAD Vector of Locally Aggregated Descriptors. xiii, 8, 12, 13, 26, 35, 36, 39, 51

xiv

List of Figures

1 Illustration of the proposed scenarios . vi

2 Confusion matrices of VGG-16 on the (a) roof shape and (b) roof material data set vii

1.1 Number of natural disasters per category between 1980 and 2017 1

1.2 Overview of the CRISP-DM framework . 4

2.1 Architecture of a simple feed forward neural network 9

2.2 Moving from feed forward neural network to CNN 10

2.3 Working of filter in CNN . 10

2.4 Conversion of convolutional features into a set of local features 11

2.5 Example of a separable 2-dimensional problem . 13

3.1 Example of aerial imagery of Sint Maarten by IGN France 18

3.2 Example of OpenStreetMap data . 18

3.3 Frequency distribution of maximum size of images in (a) the roof shape data, and
(b) the roof material data set . 19

3.4 Examples of buildings per roof shape type . 20

3.5 Examples of buildings per roof material type . 20

3.6 Examples of UC-Merced data set . 21

3.7 Examples of augmented images . 22

4.1 Illustration of the proposed scenarios . 23

4.2 Simplified example of an inception block . 26

4.3 Confusion matrix of a binary classification problem 28

5.1 Mean loss and accuracy during fine-tuning of the pre-trained networks 34

6.1 Confusion matrices of VGG-16 on the (a) roof shape and (b) roof material data set. 42

6.2 Performance of VGG-16 using various fractions of the total data set 43

xv

LIST OF FIGURES

6.3 Confusion matrix of VGG-16 on the UC-Merced data set 45

xvi

List of Tables

3.1 Breakdown of roof type labels. 19

4.1 Distributions of the selected parameters settings used in the Random Search . . . 27

4.2 Interpretations of the Kappa score . 30

5.1 Mean and standard deviation of the accuracy of the fine-tuned networks. 35

5.2 Mean and standard deviation of the Kappa score of the fine-tuned networks. . . . 35

5.3 Mean and standard deviation of the per-class F1-score of the fine-tuned networks. 35

5.4 Mean and standard deviation of the accuracy of the models of scenario I 36

5.5 Mean and standard deviation of the Kappa score of the models of scenario I 36

5.6 Mean and standard deviation of the per-class F1-score of the models of scenario I . 37

5.7 Mean and standard deviation of the accuracy of the models of scenario II 37

5.8 Mean and standard deviation of the Kappa score of the models of scenario II . . . 38

5.9 Mean and standard deviation of the per-class F1-score of the models of scenario II 38

6.1 Differences between the accuracy of the coding algorithms and the VGG-16 base line 40

6.2 Differences between the accuracy of the SVM, RF and the VGG-16 base line . . . 40

6.3 Interpretations of the Kappa score for the roof shape and roof material data set . . 43

6.4 Increase in accuracy for a 1% increase in the fraction of data used for training . . . 44

A.1 Overview of pre-trained networks available through Keras 59

B.1 weighted vs. a non-weighted performance . 60

C.1 Summary of the VGG-16 network . 61

C.2 Summary of the InceptionV3 network . 66

C.3 Summary of the Xception network . 68

D.1 Overview of all performance metrics for the roof shape data set 70

xvii

LIST OF TABLES

D.2 Overview of all performance metrics for the roof material data set 72

D.3 Overview of all performance metrics for the UC-Merced data set 78

E.1 Overview of Wilcoxon and Friedman tests for the fine-tuned VGG-16, InceptionV3
and Xception network . 79

E.2 Overview of Wilcoxon and Friedman tests for the feature coding models and the
VGG-16 base line . 80

E.3 Overview of Wilcoxon and Friedman tests for the RF model, the SVM model and
the VGG-16 base line . 81

F.1 Optimal parameters found for RF by the Random Search 83

G.1 Results of pre-trained networks (no fine-tuning) as feature extractors on the roof
shape data set . 84

G.2 Results of pre-trained networks (no fine-tuning) as feature extractors on the roof
material data set . 85

xviii

Chapter 1

Introduction

Every year, approximately 90 thousand people are killed and almost 160 million people are affected
by natural disasters, such as earthquakes floods, wildfires, and droughts1. Besides the direct impact
on the local communities of the affected areas, natural disasters have a large economical impact. In
2017, the total economic loss due to natural disasters is estimated to be a staggering 345 billion US
dollar [MunichRE, 2018]. Natural disasters occur everywhere and impact people around the world.
However, more developed countries, in terms of income, education, economy and governmental
efficiency , suffer less from natural disasters than relatively underdeveloped ones [Kousky, 2014].
Figure 1.1 illustrates the upward trend in the amount of natural disasters over the past decades.
This upward trend is not expected to change any time soon, as climate change is increasing the
odds and the intensity of extreme weather events [ECIU, 2017].

Figure 1.1: Number of natural disasters per category between 1980 and 2017 (Source: Munich
RE: NatCatSERVICE - https://natcatservice.munichre.com)

Examples of major natural disasters of the past years are the floods in Malawi and hurricane
Irma in Sint Maarten. In 2015, heavy rainfall caused the water level of the Shire River, the largest
river in Malawi, to rise to the highest level in 30 years. 15 out of 29 districts were impacted by
the floods, affecting over one million people. Early September 2017, hurricane Irma struck the
island of Sint Maarten, affecting 90% of the buildings and leaving 7000 people (roughly 17% of
the total population) without a house. The effectiveness, efficiency, and swiftness of humanitarian
aid in such situations depends on the availability of local information, such as maps. However, in

1https://www.who.int/environmental_health_emergencies/natural_events/en/

1

https://natcatservice.munichre.com
https://www.who.int/environmental_health_emergencies/natural_events/en/

CHAPTER 1. INTRODUCTION

practice this information is often not available. For instance, maps for rural areas in developing
countries such as Malawi, are generally unavailable or incomplete. Furthermore, in many cases
information about the current state of the affected areas is crucial, such as after hurricane Irma
in Sint Maarten.

Initiatives like the MissingMaps2 project help humanitarian aid organisations to obtain the
necessary maps. Through MissingMaps, volunteers can remotely trace buildings, roads, and other
information in aerial imagery into OpenStreetMap3, an open source map data base. Subsequently,
local volunteers can add more detailed information about the traced objects, e.g. street names
and building characteristics. Currently, MissingMaps is the go-to solution for humanitarian aid
organisations when up-to-date and complete map data is unavailable. However, the process of
acquiring these maps is time consuming, labour intensive, and the quality depends heavily on the
skills of the volunteers. Thus, a more swift, efficient, and reliable solution for this problem is
desired.

510, the Netherlands Red Cross (NLRC) data team, is investigating the possibility of (partly)
automating the mapping process of remote areas using aerial imagery and machine learning. The
desired models should be able to detect (the outlines) of buildings within the aerial imagery, and
determine additional building characteristics of each building. Both objectives have their own
inherent challenges and data needs. Therefore, the project is split into two: one project will
focus on the automatic detection of buildings, and another on automatic classification of building
characteristics in remotely sensed imagery. This research will explore the latter topic. For example,
building characteristics (e.g. roof type and wall type) could indicate the vulnerability of buildings
to natural disasters. Therefore, this research will explore the possibility of automatic classification
of roof types, i.e. roof shape and roof material, using aerial imagery and detailed building data of
Sint Maarten.

Classification of remotely sensed imagery is a widely investigated topic. In the past, image
classification relied on image feature extraction algorithms (e.g. SIFT [Lowe, 1999], SURF [Bay
et al., 2006], and ORB [Rublee et al., 2011]) to extract features which represent each image.
Subsequently, these representations were encoded using coding algorithms (e.g. Bag Of visual
Words (BOW) [Sivic and Zisserman, 2003]) and used to train a classifier such as Support Vector
Machines (SVMs). Recently, CNNs have risen in popularity and have become the state-of-the-art
due to its superior performance [Li et al., 2018]. There has been little research regarding the
implementation of CNNs for the classification of roof types. Partovi et al. [2017] implemented a
CNN to classify various roof shapes (e.g. flat, hip, pyramid) of buildings in the city of Munich
(Germany) using 50cm spatial resolution imagery. Castagno and Atkins [2018a] combined features
extracted from aerial imagery using a CNN and LIDAR4 data. The model is trained on aerial
imagery (resolution between 30-70cm) of Witten (Germany) and Manhattan (New York, USA)
and evaluated on a independent data set of Ann Arbor (Michigan, USA). At last, Castagno and
Atkins [2018b] used CNNs on the aerial imagery of Witten (Germany) to classify roof shapes.
This work differs from the others, as only spectral (non-LIDAR) data is used and also extends the
classification to roof material.

Using data from Sint Maarten, this research will explore the implementation of state-of-the-
art CNN architectures for the classification of the roof shape and material type of buildings.
Furthermore, it will explore new strategies to further exploit existing CNN architectures for the
classification of remotely sensed imagery.

2https://www.missingmaps.org
3https://www.openstreetmap.org
4Laser Imaging Detection And Ranging (LIDAR) data is obtained by measuring the distance between the surface

and the camera using a laser

2

https://www.missingmaps.org
https://www.openstreetmap.org

CHAPTER 1. INTRODUCTION

1.1 Research Questions

The main objective of this research project is to develop a model which can automatically de-
termine the type of roofs on buildings in aerial imagery. Recently, CNNs have shown promising
results in image classification tasks. Therefore, the research will explore new strategies to further
exploit CNN architectures achieving state-of-the-art performance on remote sensing bench mark
data sets. The main research question is as follows:

• How can convolutional features extracted from pre-trained Convolutional Neural Networks
be exploited to classify remotely sensed imagery?

More specifically, the research will propose two different strategies to improve performance.
First, it will investigate the use of well known feature coding algorithms, which have shown success
in traditional image classification pipelines. The second strategy involves the use of Random
forests. These two strategies can be formulated in the following research sub-questions:

1. Can feature encoding of convolutional features improve the classification performance of
Convolutional Neural Networks?

2. Can Random Forests improve the classification performance of Convolutional Neural Net-
works?

Answering these two sub-questions ensures two outcomes. First, by using state-of-the-art CNN
architectures as a baseline, the roof type classification problem is solved by the best models cur-
rently available. Hence, the obtained results provide a good indication of the current feasibility
of classification of roof characteristics in aerial imagery. Secondly, by exploring the aforemen-
tioned strategies, this work extends to existing literature regarding the exploitation of CNN in
classification of remotely sensed imagery.

1.2 Methodology

This section will describe the methodology used, the Cross Industry Standard Process for Data
Mining (CRISP-DM). The CRISP-DM approach consist 6 steps: business understanding, data un-
derstanding, data preparation, modelling, evaluation, and deployment. These steps are visualised
in figure 1.2.

In the first step, business understanding, the business objectives and success criteria are de-
termined. The business objective describe what the project aims to achieve from a business
perspective and the business success criteria specify when the objectives are achieved. The busi-
ness objective of this work (as described in the introduction) is to develop a model which can
successfully automatically determine roof types of buildings in aerial imagery.

Subsequently, the business objectives and success criteria are translated in concrete data mining
objectives and success criteria. The business objective is transformed into two concrete data mining
objectives: (1) classification of roof shape types and (2) classification of roof material of buildings
in aerial imagery. The quality of the predictions is deemed sufficient when an accuracy of at least
85% is achieved.

Data understanding involves the collection, description, exploration, and verification of the
available data sets. This work tries to achieve the objectives using data from Sint Maarten. The
connection between business understanding and data understanding is clearly visible in stating
the data mining objectives. Since the data used in this work only contains information of roof

3

CHAPTER 1. INTRODUCTION

Figure 1.2: Overview of the CRISP-DM framework

shape and roof material, these aspects are the only ones that are incorporated in the data mining
objectives.

The main goal of the third step, data preparation, is to prepare the available data in such a way
that it can be directly used by the models in the subsequent step, modelling. The data preparation
and modelling steps are interconnected, as models require particular input formats for optimal
performance. Besides the shared general pre-processing steps, the image classification models used
in this work require model-specific pre-processing steps, emphasising the linkage between these two
steps.

In the modelling step, various models are selected and tested and the models are evaluated with
regard to the data mining objectives and success criteria defined during the business understanding
phase.

In the last step performed in this research project, evaluation, the results are discussed with
respect to the business objectives and success criteria. If the business objective is not achieved,
one can start another iteration in the CRISP-DM cycle, starting again at business understanding.
If the business objectives are achieved, the models can be deployed in the business. The exact
models in this work will not be deployed, as these are specifically trained on the data set of Sint
Maarten. However, it will be evaluated whether similar classification pipe lines can be used in the
future, including a set of recommendations.

1.3 Outline

The remainder of this work is structured as follows:

• Chapter 2 provides the theoretical background of the techniques used in this paper.

• Chapter 3 gives an overview of the data used in this work, as well as the data preparation
steps executed.

• Chapter 4 describes the experimental setup which is used to answer the research questions.

• Chapter 5 presents the results of the various experiments conducted.

4

CHAPTER 1. INTRODUCTION

• Chapter 6 assesses the results of the experiments with respect to the research questions and
objective.

• Chapter 7 discusses the practical implications of this work for future implementation

• Chapter 8 concludes the paper by summarising the main findings, describing the limitations,
and recommending future research directions.

5

Chapter 2

Background Information

This chapter describes all background related material with respect to this thesis. First, the
literature related to this work is summarised in section 2.1, as well as the identified research gaps.
Subsequently, all theory behind the models and algorithms are explained in more detail: section 2.2
introduces the concepts behind CNNs, section 2.3 describes the four coding algorithms used in
this work, and section 2.4 explains the mechanisms behind SVM and Random Forests (RF).

2.1 Related Work

Traditionally, image classification consisted of three steps: (1) local image feature extraction, (2)
feature coding, and (3) classification. The first step involves the use of predefined feature extrac-
tion algorithms (e.g. SIFT) which extract local features from several patches within the image.
Subsequently, the local image features are encoded by coding algorithms to generate more sparse
features suitable for classification. At last, the encoded image features are fed into a classifier. In
the past years, image classification problems have been dominated by CNN architectures, which
significantly outperform all previous state-of-the-art benchmarks [Krizhevsky et al., 2012]. CNN
architectures are typically built up from convolutional layers, pooling layers, and fully connected
layers. In these architectures, the convolutional layers and pooling layers are responsible for image
feature extraction, and the fully connected layers for classification.

The outstanding performance of CNNs in remote sensing is mainly due to the use of transfer
learning: complex deep CNN architectures are pre-trained on enormous image data bases (e.g.
ImageNet [Deng et al., 2009]) and used in other image classification problems. Generally, there
are three approaches when using existing CNN architectures on another data set: (1) training
the CNN from scratch using the target data set, (2) fine-tuning the CNN on the target data
set, and (3), using the CNN directly as feature extractor in combination with another classifier.
What approach achieves the best results depends on the characteristics of the target data set,
and the data set the CNN was initially trained on. Generally, fine-tuning is the better alternative
when the target data set is small and the initial data set is similar and fully training the network
from scratch is preferable when the target data set is large and different than the initial data set
[Castelluccio et al., 2015]. Moreover, no clear winner in terms of performance can be denoted
comparing the different pre-trained networks, as the relative performance of pre-trained networks
differs per data set [Cheng et al., 2016a, Li et al., 2018].

Despite the use of pre-trained networks, overfitting is still a problem when there is little training
data. Several papers investigate so-called regularisation techniques to mitigate this problem.
Data augmentation, artificially increasing the number of data samples in the data set, has proven

7

CHAPTER 2. BACKGROUND INFORMATION

to increase the performance of CNNs in image classification. Relatively simple transformations
such as: rotating, flipping, translating, and transposing have shown to improve the classification
performance of CNNs [Hu et al., 2015, Cheng et al., 2016b, Scott et al., 2017, Yu et al., 2017a,b].
More complex data augmentation techniques include generation of new samples by adding noise
[Slavkovikj et al., 2015], pixel-pairing [Li et al., 2017], and generative-adversarial networks [Zhu
et al., 2018].

CNNs have also been used as image feature extractors: by removing one (or more) top layer(s)
of the network one can extract features which can be used as input for other classification al-
gorithms. SVMs are commonly used in combination with CNN features. For example, In the
work of Nogueira et al. [2017], CNN-SVM combinations outperformed conventional CNN archi-
tectures. Besides SVMs, other classification algorithms have been implemented successfully in
combination with CNNs as well, such as Recurrent Neural Networks [Wu and Prasad, 2017], Ex-
treme Learning Machines [Yang et al., 2018] and Global Average Pooling [Zhong et al., 2016,
Alshehhi et al., 2017].

CNN classification pipelines are different from the traditional image classification pipeline
described above, as no feature coding is involved after feature extraction by convolutional layers.
Feature coding can, however, also be implemented in combination with CNNs. Features extracted
from a convolutional layer of a CNN, so-called convolutional features, describe parts of an image.
These local features are similar as the ones obtained by conventional feature extraction algorithms
(e.g. SIFT); thus, can be encoded in a similar fashion. Cheng et al. [2017] extracted convolutional
features from the last convolutional layers of various pre-trained networks and encoded it by the
popular image coding scheme BOW [Sivic and Zisserman, 2003]. BOW maps each local feature
to the nearest visual word in a code book, which can be obtained by clustering the local features.
Zhou et al. [2017] used BOW and three more complex extensions (i.e. Vector of Locally Aggregated
Descriptors (VLAD) [Jégou et al., 2010], Locality-constrained Linear Coding (LLC) [Wang et al.,
2010] and Improved Fisher Kernel (IFK) [Perronnin et al., 2010]) to encode convolutional features
for the retrieval of remotely sensed imagery. At last, Hu et al. [2015] proposed an architecture where
a CNN generated the convolutions features of multiple scales of the same image. Subsequently,
these multi-scale convolutional features are encoded by the aforementioned coding schemes. The
alternatives including feature coding increased performance over the one without feature coding
in all mentioned papers.

The major role of feature coding in the past and its current absence in CNN classification
approaches, raises the question whether CNNs rendered this step obsolete. None of the mentioned
literature implemented feature coding in the same way as in the conventional image classification
pipeline. Furthermore, while research regarding the use of alternative classification algorithms
includes more exotic classification algorithms, none of the work investigated the use of RF. This
research aims to fill the identified research gaps, which could provide valuable insights in how to
improve the classification performance of CNNs.

2.2 Convolutional Neural Network

The human brain consists of billions of neurons which are connected through trillions of connec-
tions. Neurons can pass information to other neurons by sending electrical signals through its
connections. Together, the neurons and connections enable a human being to process information.
An Artificial Neural Network (ANN) is a model which mimics the working of the human brain.
ANNs are networks of artificial neurons. Inputs flow through the ANN and are transformed along
the way by the weights of the connections and activation functions of the neurons. The simplest
type of an ANN is the feed forward neural network, which is illustrated in figure 2.1. A feed
forward neural network consists of an input layer, a number of hidden layers, and an output layer.
The neurons within a feed forward neural network are connected to all the neurons in the pre-

8

CHAPTER 2. BACKGROUND INFORMATION

ceding and subsequent layer. ANN are trained in a supervised manner. The network is trained
by minimising a loss function using labelled training samples. The loss function indicates the
difference between the predicted values by the network and the actual values. Given the loss of
the network the weights of the connections are trained iteratively through back propagation and
optimisation algorithms such as (stochastic) gradient descent. Back propagation calculates the
gradient of the loss function with respect to the weights of the connections in the network, i.e.
how the loss changes for small changes of the weights in the network.

Figure 2.1: Simple feed forward neural network with two hidden layers (source:
http://cs231n.github.io/neural-networks-1)

Besides feed forward neural networks, many other types of neural networks exist with each its
own advantages and disadvantages. CNN is a type neural network often implemented in computer
vision applications. The layers within a CNN are different than conventional neural networks (e.g.
feed forward neural network). Typically, the three main components of a CNN architecture are
convolutional layers, pooling layers, and fully connected layers. The remaining part of this section
will describe these key components in more detail.

2.2.1 Convolutional Layers

Convolutional layers differ from layers in conventional neural networks. Layers within conventional
neural networks are fully connected (i.e. each node is connected to all nodes of the preceding and
following layer) and each connection has its own trainable weight. Complex classification problems,
such as image classification, require several layers of connected neurons to be effective. However,
the number of connections increase rapidly for deep networks, requiring a large train data set and
excessive amount of computation power [Castelluccio et al., 2015].

CNNs’ nodes have a limited receptive field, i.e. a node is not connected to all nodes in the
preceding layer. Furthermore, neurons in the same convolutional layer share weights, reducing the
amount of weights to be trained. This difference can be seen in figure 2.2. (a) represents feed
forward neural network with fully connected layers: there is a connection between each node. (b)
shows the nodes in convolutional layers, which have a limited receptive field. (c) illustrates how
the connections to nodes in a layer are similar to another, i.e. as they share the same weights.
This example demonstrates how the number of trainable weights decreases from 15 to 3 moving
from a feed forward neural network to CNN respectively.

Convolutional layers have typically nodes arranged in three dimensions: width, height, and
depth. The second layer of the CNN example from figure 2.2 can be seen as a convolutional layer
with height, width and depth of 3, 1, and 1, respectively. Filters move over the regions of nodes
of the preceding layer and is connected to the nodes in the next layer. This process is illustrated
in figure 2.3. Each filter creates a new sub-layer in the depth dimension. Stride determines the
step size at which a filter moves over the input. Zero-padding adds additional zeros around the

9

CHAPTER 2. BACKGROUND INFORMATION

Figure 2.2: Moving from feed forward neural network to CNN: (a) feed forward neural network’s
fully connected nodes, (b) CNN’s nodes with limited receptive field, (c) colours illustrate the
weight sharing of nodes in CNN (source: Castelluccio et al. [2015])

boundaries of the input layer of the filter. By applying padding one can influence the size of the
output layer.

Figure 2.3: Working of filter in CNN (source: https://mlnotebook.github.io/)

2.2.2 Pooling Layers

Pooling layers are often placed between convolutional layers to decrease the spatial dimensions
of the layers. Pooling layers combine multiple nodes from the preceding layer into a single node.
Examples of pooling are max pooling and average pooling. In max and average pooling the output
node receives respectively the average and maximum value of the input region (which can be a
multi-dimensional region).

2.2.3 Fully Connected Layers

Convolutional and pooling layers are very good in extracting abstract image features from the
input images. However, they are not suited for classification tasks. Therefore, fully connected
layers are added on top of the convolutional layers. As explained, nodes in fully connected layers

10

https://mlnotebook.github.io/

CHAPTER 2. BACKGROUND INFORMATION

are connected to all nodes in the preceding and succeeding layer. The last fully connected layer is
often a Softmax layer which outputs the respective normalised probabilities of an input belonging
to the classes.

2.3 Feature Encoding

This section will introduce the four feature coding algorithms used in this research. Feature
coding will be applied to the local features extracted from the last convolutional layer of the CNN.
As described in the previous section, a convolutional layer typically has nodes arranged in three
dimension: height (h), width (w), and depth (d). Features maps extracted from a convolutional
layer of size h× w × d can be flattened out into a set of feature vectors:

X = (x1, ...xN).

xi denotes a d-dimensional local feature vector which represents a part of an image. The number
of local features describing each image, N , is equal to h × w. This conversion is visualised in
figure 2.4. Each feature coding scheme will encode the local features of each image, X, into an
encoded representation V .

Figure 2.4: Conversion of convolutional features into a set of local features

2.3.1 Bag Of visual Words

The first step in Bag Of visual Words (BOW) [Sivic and Zisserman, 2003] coding scheme is the
construction of code book C = (c1, ..., cK) with K entries. This code book is generated by k-means
clustering all local features X of (a subset of) the imagery. By quantizing each local feature xi
into a code in the code book, a frequency histogram can be constructed for local features X of size
K. Finally, the frequency histogram, for local features X is normalised using L2-normalisation1

resulting in K-dimensional encoded features V = (v1, ..., vK).

Using BOW coding scheme has two main benefits. First, it reduces the size of the features to
K. Secondly, BOW makes the model more invariant to transformations, since the location of the
features are lost when constructing the histogram. On the other hand, the quantization of the
local features leads to a loss of (potentially relevant) information.

1for a given vector x = (x1, ..., xn) the L2 normalised equivalent is equal to: x/
√∑n

i=0 x
2
i

11

CHAPTER 2. BACKGROUND INFORMATION

2.3.2 Vector of Locally Aggregated Descriptors

Just as the BOW model, Vector of Locally Aggregated Descriptors (VLAD) [Jégou et al., 2010]
constructs a code book C = (c1, ..., cK) using k-means clustering and assigning the local features
X to the closest code. For each visual word ci, VLAD accumulates the differences between cluster
centre ci and the local features x closest to that centre. Thus, the VLAD encoded features
V = (v1, ..., vK) for local features X = (x1, ...xN) can be described as follows:

vk =

N∑
i=1

qi,k(xi − ck),

where qi,k is 1 when the ith local feature xi is assigned to cluster k, and 0 otherwise. xi is
the d-dimensional feature vector of the ith local feature, and 0 otherwise. Finally, the encoded
features are normalised using signed squared-root normalisation2 and L2-normalisation resulting
in K × d-dimensional VLAD features V .

Just as BOW, VLAD makes the model more invariant to transformations. Although VLAD
features can reduce the size of the feature, this depends more on the size of the code book. Also,
less information is lost as it takes into account the magnitude of the values of the local features.

2.3.3 Locality-constrained Linear Coding

Similar to BOW and VLAD, Locality-constrained Linear Coding (LLC) [Wang et al., 2010] de-
pends on a code book, C = (c1, ..., cK), obtained by K-means clustering. LLC finds for each local
feature xi M -nearest neighbours from code book C, denoted as Ci. Ci has the same size had
C, but only the M -nearest neighbours have non-zero values. Next, the LLC encoded features,
V = (v1, ..., vK), for local feature xi can be obtained by minimising the following system:

min
V

N∑
i=1

||xi − Civi||2

subject to 1T vi = 1, i = 1, ...N.

1 denotes a ones vector with the same size as li. By minimising this function a K-dimensional
LLC feature is obtained for each local feature xi.

The obtained LLC feature is not sparse in the sense that the spatial dimensions of the feature
are decreased, but that it only has m non-zero values. Further, it loses less information compared
to BOW and VLAD, as it does not use vector quantization.

2.3.4 Improved Fisher Kernel

Improved Fisher Kernel (IFK) [Perronnin et al., 2010] is a improved version of the original Fisher
Vector (FV) coding algorithm [Perronnin and Dance, 2007]. Fisher vector coding assumes that
the probability density function of the local features X = (x1, ...xN) is described by a Gaussian

Mixture Model (GMM), uλ(X) =
∑K
j=1 wjuj(X) with K components. The parameters for uj are

given by λ = (wj , µj ,Σj , j = 1, ...K). wj , µj , Σj denote respectively the mixture weight, mean
vector, and covariance matrix of the jth component of the mixture model. Assuming the local
features X are all generated independently by the GMM, an image can be expressed as the the

2for a given vector x = (x1, ..., xn) the signed squared-root normalised equivalent is equal to: sign(x)/
√

|x|

12

CHAPTER 2. BACKGROUND INFORMATION

log likelihood of all extracted features:

G(X|λ) =
1

N

N∑
i=1

∇λ logµλ(xi).

The assignment of local feature xi to Gaussian component j is denoted by γi,j :

γi,j =
wjuj(xi)∑K
k=1 wkuk(xt)

,

where the covariance matrix Σj is assumed to be diagonal and the variance vector is denoted by
σ2
i (i.e. the diagonal values of the covariance matrix). FV considers the gradients with respect to

the mean µj , and standard deviation σj , which are denoted as respectively Gµ,j and Gσ,j :

Gµ,j(X) =
1

N
√
wj

N∑
i=1

γi,j

(
xi − µj
σj

)
,

Gσ,j(X) =
1

N
√

2wj

N∑
i=1

γi,j

((
xi − µj
σj

)2

− 1

)
.

At last, the FV features V = (v1, ..., vK) be obtained by concatenation of Gµ,j(X) and Gσ,j(X):

vj = [Gµ,j(X);Gσ,j(X)], j = 1, ...,K.

Hence, the final IFK representation V is 2K ×D-dimensional.

Just as LLC, IFK main trait is that it does not quantize the vectors, and thereby losing less
information compared to BOW and VLAD.

2.4 Classifiers

Conventional CNN classification architectures use fully connected connected layer with softmax
activation to transform features generated by the convolutional layers into class predictions.
However, other classifiers can also be used for classification. This section will describe the two
classifiers used in this work: Support Vector Machine (SVM) and Random Forests (RF).

2.4.1 Support Vector Machine

Figure 2.5: Example of a separable 2-dimensional problem (source: Cortes and Vapnik [1995])

13

CHAPTER 2. BACKGROUND INFORMATION

One of the classification algorithms used in this work is the SVM algorithm introduced by
Cortes and Vapnik [1995]. SVM is a supervised classification algorithm which aims to find the
optimal hyper plane to separate two classes. The optimal hyper plane is chosen such that it
maximises the distance (i.e. optimal margin) between the data points of both classes. Figure 2.5
illustrates the working of a SVM in a 2-dimensional problem. SVM owns its name to so-called
support vectors, marked grey in figure 2.5, which are the observations that define the optimal
hyper plane. SVM gained popularity in the field of remote sensing due to its ability to successfully
achieve relatively high accuracy with a small training data set, makes no prior assumption on
the probability distribution of the data, and is known to find the right balance between accuracy
achieved on training data and its ability to generalise to new data [Mountrakis et al., 2011].

Next, a brief description will be given for SVM in its simplest form: as a binary classifier
with a linear kernel. Lets define the training data as (x1, y1), ...(xN , yN), where xi represents the
feature vector for observation i, and yi ∈ (−1, 1) the corresponding class label. The data is linearly
separable if a vector w and a scalar b exist that satisfies:

yi(w · xi + b) = 0, i = 1, ..., N.

The optimal separating hyper plane is the one which maximises the margin ρ, which can be
computed as follows:

ρ =
2

||w||
.

The optimal hyper plane can then be found by minimising the following function :

min
w

1

2
||w||2

subject to yi(w · xi + b) ≥ 1, i = 1, ..., N.

However, the above problem assumes that the data is linearly separable. However, this is often
not the case or could lead to overfitting. Hence, a slack variable ξi and a regularisation constant
C are introduced to the optimisation problem described:

min
w

1

2
||w||2 + C

N∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, i = 1, ..., N,

ξi ≥ 0; i = 1, ..., N,

where the regularisation parameter C denotes the penalty for each incorrect classified obser-
vation, and is a parameter to be tuned during training.

In essence, SVM is a binary classifier. However, one can adopt the SVM algorithm in multi-class
classification problems. The two most used strategies are the one-vs-rest scheme, and the one-vs-
one scheme. The one-vs-rest scheme trains a binary SVM per class, where the observations of the
targeted class are seen as the positive observations (yi = 1), and all other classes as the negative
observations (yi = −1). Subsequently, the class with highest predicted value (the largest margin)
is selected. The one-vs-one scheme trains a SVM per pair of classes, resulting in K(K − 1)/2
classifiers for K classes. All SVMs estimate the class label given an observation, and the most
predicted class is selected.

2.4.2 Random Forests

The other classification algorithm used in this paper is RF [Breiman, 2001]. Just like SVM, RF is
a supervised non-parametric classification algorithm. The RF classifier consist of an ensemble of

14

CHAPTER 2. BACKGROUND INFORMATION

decision trees, which are trained on subsets of the original train data set. RF has gained traction in
the remote sensing community due to its ability to deal with high dimensional data, insensitivity
to data quality and easy to use with respect to parameters settings [Belgiu and Drăguţ, 2016].

Lets denote the features of the train data set as X = (x1, ..., xN), and the corresponding class
labels as Y = (y1, ..., yN). Further, each observation xi contains M variables. The first step in the
RF algorithm is setting the number of decision trees, T . Next, T subsets are created by sampling
(with replacement) N observations from the train data set (X,Y), denoted by (Xt, Yt), t = 1, ..., T .
Subsequently, each tree t in the forest is trained separately on sub set (Xt, Yt).

Training the trees in the forest, also referred to as tree growing, can be done using a slightly
adapted version of the CART algorithm [Breiman et al., 1984]. For each tree, the tree growing
process starts at the root node containing all samples in subset Xt, Yt. Next, a selection of S < M
variables from all M variables in Xt is randomly drawn (in the original CART algorithm this step
is skipped). For all possible binary splits in each of the selected variables, the splitting criterion
is computed. The splitting criterion in the CART algorithm is the Gini coefficient. The Gini
coefficient of a child node j is defined as follows:

Ginij = 1−
K∑
i=1

p2i ,

where K denotes the number of classes in the classification problem. pi denotes the relative
frequency of class i. However, as each split consists of two nodes, the Gini coefficient of the split
is the weighted average of the Gini coefficients at both nodes.

Ginisplit =
n1
n
Gini1 +

n2
n
Gini2.

nj (j = 1, 2) refers to the number of observations at child node j and n to the amount of obser-
vations at the parent node (note n1 + n2 = n). Subsequently, the split is chosen which minimises
Ginisplit. For the obtained child nodes, this process keeps repeating itself until the nodes (the
last child node) are pure, i.e. only observations from one class are left at the node, or another
stopping criteria is reached.

15

Chapter 3

Descriptions of Data Sets

A total of three data sets will be used in this work. Two data sets are obtained from aerial
imagery of Sint Maarten for classification of respectively the roof shape and the roof material of
buildings. The other data set is the UC-Merced land-use data set. The UC-Merced land-use data
set is frequently used in other works, and will serve as a benchmark. Section 3.1 outlines the data
sources and necessary steps for the generation of the Sint Maarten data sets. The UC-Merced
data set is presented in section 3.2. At last, section 3.3 provides more information regarding data
pre-processing and augmentation.

3.1 Sint Maarten

This section summarises all relevant information regarding the data sets of Sint Maarten. First,
it will describe the data sources from which the raw data is obtained. Next, a description of the
final data sets is presented, including a breakdown with regards to class labels and samples of the
imagery.

3.1.1 Data Sources

IGN France obtained aerial imagery covering (almost) all of Sint Maarten in February 2017. This
imagery is available as a georeferenced orthoimage through OpenAerialMap1, a platform for open
source aerial imagery. All data on OpenAerialMap can be used under the CC-BY4.02 license.
Orthoimagery is generated by geometrically correcting the original images for camera tilt, terrain
relief, and lens distortion. By doing so, everything in an orthoimage looks like it is viewed from
directly above, i.e. with an angle of exactly 90 degrees. The orthoimage has a spatial resolution of
20 cm, i.e. each pixel in the image covers an area of 20 cm by 20 cm on the ground. Additionally,
the orthoimage is georeferenced, meaning that the image can be related to actual coordinates.
Figure 3.1 shows a part of the orthoimage.

OpenStreetMap3 is an open source project seeking to create a freely accessibly map data
base covering the entire world. The data is obtained by the effort of many volunteers and the
contributions of the holders of licensed data sets. The data can be used under the ODbL4 license.
OpenStreetMap includes map data of Sint Maarten such as the location and outlines of buildings

1http://openaerialmap.org
2https://creativecommons.org/licenses/by/4.0
3https://www.openstreetmap.org
4https://opendatacommons.org/licenses/odbl

17

http://openaerialmap.org
https://creativecommons.org/licenses/by/4.0
https://www.openstreetmap.org
https://opendatacommons.org/licenses/odbl

CHAPTER 3. DESCRIPTIONS OF DATA SETS

Figure 3.1: Example of aerial imagery of Sint Maarten by IGN France (source: http://

openaerialmap.org)

and roads. The outline data of Sint Maarten from OpenStreetMap is based on the same aerial
imagery used in this paper. Therefore, (almost) no difference exists between the outlines in the
OpenStreetMap data and the actual buildings in the aerial imagery. Figure 3.2 shows a part of
the OpenStreetMap data.

Figure 3.2: Example of OpenStreetMap data (source: https://www.openstreetmap.org)

Additionally, OpenStreetMap includes additional attributes of individual buildings. The at-
tributes relevant for this project are the roof shape and roof material of each building. The roof
shape is labelled as either flat or hipped. The roof material is denoted as either concrete, metal,
or roof tiles.

3.1.2 Description

The OpenStreetMap data is used to clip (cut out) the individual buildings from the from the
orthoimagery. In total 30,660 buildings are clipped from the orthoimagery. The buildings for
which no roof material or roof shape data is available, are excluded from the data set.

The final number of images per data set is 8,349 and 11,661 for respectively the roof shape data
set and roof material data set. Table 3.1 shows a break-down of the roof shape and roof material
labels of all the buildings. The data sets are moderately imbalanced as the relative frequencies
of the classes in the roof shape and roof material data set are respectively 35/65% (hipped/flat),
and 58/14/28% (metal/tiles/concrete).

18

http://openaerialmap.org
http://openaerialmap.org
https://www.openstreetmap.org

CHAPTER 3. DESCRIPTIONS OF DATA SETS

Material

Shape metal tiles concrete NA total

hipped 1028 1027 90 790 2935
flat 1824 130 2609 851 5414
NA 3938 501 514 17358 22311

total 6790 1658 3213 18999 30660

Table 3.1: Breakdown of roof type labels.

Differences exist in the size of the buildings and therefore also the size of the images differ.
Figure 3.3 shows the frequency distribution of the maximum size (i.e. max(width, height)) of the
images in the roof shape and roof material data set. A number of images (< 20) are greater than
500 pixels in width or height.

(a) Shape (b) Material

Figure 3.3: Frequency distribution of maximum size of images in (a) the roof shape data, and (b)
the roof material data set

Examples of the images are shown in figure 3.4 and figure 3.5 for respectively the roof shapes
and roof materials. Taking a closer look at these images, a clear distinction can be made between
flat and hipped roofs. However, this is not as easy for the roof materials: the classes metal and roof
tiles are sometimes very similar, which makes differentiating between the two more challenging.

Hence, a remark must be made regarding the quality of the data of OpenStreetMap. The
quality of the data describes to what level the building labels from OpenStreetMap matches the
actual characteristics of the buildings. The labels are obtained by the efforts of many volunteers,
who manually labelled the buildings based on the aerial imagery described in the previous section.
For untrained volunteers, it might be difficult to determine the correct building characteristics
based only on the aerial imagery and some of the buildings might not be correctly labelled.
Incorrectly labelled buildings might result in a worse performance of the models and incorrect
evaluation. It is highly likely that some buildings are incorrectly labelled, given the similarity
in the roof tiles and metal class in the roof material data set. However, the size of the data set
and the time constraints of this project make it difficult to validate the labels of OpenStreetMap.
Moreover, additional information (e.g. higher quality imagery, local confirmation) is needed to
actually validate the quality of the labels. Therefore, the quality of the labels is not checked.
This uncertainty with respect to the class labels must be taken into account when discussing the
results.

19

CHAPTER 3. DESCRIPTIONS OF DATA SETS

(a) Flat

(b) Hipped

Figure 3.4: Examples of buildings per roof shape type

(a) Concrete

(b) Metal

(c) Roof tiles

Figure 3.5: Examples of buildings per roof material type

3.2 UC-Merced

The UC-Merced data set [Yang and Newsam, 2010] contains aerial imagery from 21 classes. The
data set consists of 100 images per class, and each image has a size of 256×256 pixels. The spatial
resolution of each image is 30cm. Figure 3.6 shows for each of the classes an example image. The
UC-Merced is a challenging data set; as there are relatively few images per class, and some of the
classes are very similar (i.e. dense residential and medium residential).

In this work, the UC-Merced data set is used as a benchmark data set. There are several
benefits in adding a benchmark data set to the study. A comparison can be made with regards
to performance, as other works used the exact same data set. Additionally, as the models in this
work are similar to the ones in other literature, they should achieve similar results. Mismatching
results could indicate incorrect implementation of the models. Furthermore, image classification
models tend to behave differently on different data sets. Thus, the addition of another data set
improves the quality of the conclusions.

20

CHAPTER 3. DESCRIPTIONS OF DATA SETS

(a) agricultural (b) air plane (c) baseball
diamond

(d) beach (e) buildings (f) chaparral (g) dense
residential

(h) forest (i) freeway (j) harbour (k) golf course (l) intersection (m) medium
residential

(n) mobile
home-park

(o) overpass (p) parking lot (q) river (r) runway (s) sparse-
residential

(t) storage
tanks

(u) tennis court

Figure 3.6: Examples of UC-Merced data set

3.3 Data Preparation & Augmentation

It is important that the images are of the same input format as the images on which the network
is trained on. For each network, the images must be re-sized to a pre-defined size (e.g. 224× 224
pixels) and certain pre-processing steps must be done (chapter 4 will discuss the required image
sizes and pre-processing steps for the various models).

Data augmentation will be used to increase the amount of train data. Only basic image
transformations are applied to the original images. While many simple augmentation methods
have proven to be effective, the augmentation is limited to (horizontal and vertical) flips and
rotation. More augmentation techniques would not be beneficial for the alternative classifiers used
in this study (i.e. RF and SVM), as the amount of physical memory is not enough to train the
classifiers on large sets of augmented images. Further, instead of augmenting the data beforehand
in the pre-processing phase, the data is augmented in real-time. Real-time data augmentation
transforms batches of the original images just before it is used for training. This increases the
amount of augmented samples seen during training CNNs, which is able to be trained with batches
of images. For the alternative classifiers however, this advantage is limited, as all images have to
be fed into the classifier at once, restricting the amount of images. Examples of the augmented
images are shown in figure 3.7.

21

(a) 56 °, no, yes (b) 151 °, no, yes (c) -80 °, no, yes (d) -160 °, no, no (e) -11 °, yes, no

Figure 3.7: Examples of augmented images. The sub-captions denote respectively the rotation
angle, horizontal flip (yes/no), and vertical flip (yes/no).

Chapter 4

Experimental Setup

This chapter describes the implementation details of the experiments in this work. Setting up the
experiments is an important step in the process of finding answers to the defined research questions.
Two new classification approaches are evaluated which both utilises features extracted from a fine-
tuned CNN. The first approach extracts multidimensional features from a convolutional layer of
a fine-tuned CNN. Subsequently, these features are encoded using the four encoding algorithms
presented in section 2.3. Finally, a linear SVM is used for classification of the images. The second
approach extracts image features from the last fully connected layer and uses the classification
algorithms presented in section 2.4 as final classifiers. Both approaches make use of the same
pre-trained CNN, which is first fine-tuned on the target data.

The two approaches are illustrated in figure 4.1. In the remaining of this chapter, the two
approaches will be referred to as scenario I and scenario II.

Figure 4.1: Illustration of the proposed scenarios

23

CHAPTER 4. EXPERIMENTAL SETUP

4.1 Experimental Protocol

The three data sets (i.e. roof shape, roof material, UC-Merced) are split into a training set and
a test set. The test set is kept separated from the training process of the models (which includes
fine-tuning of parameters). The way the train and test set are obtained differs for the Sint Maarten
data sets and the UC-Merced data set. Two reasons for this difference: first, the size of the Sint
Maarten data set is greater than the size of the UC-Merced data set. Secondly, by using the same
split strategies as other literature for the UC-Merced data, the performance of the models can be
evaluated against the results of other works.

The Sint Maarten data sets are stratified random split into 10% training set and 90% test set.
A stratified split is used since there is class imbalance, i.e. the classes are not equally represented
in the data set. Stratified splitting ensures that the relative frequency of each class is the same
among all splits. Further, a relatively small proportion of the data set is taken as training set (i.e.
834 and 1116 images for respectively the roof shape and roof material data set), as in practice, such
labels are unavailable and must be generated manually. Therefore, the proposed models should
work with a limited amount of training samples. The process of randomly splitting the data sets,
training, and testing the models is repeated 10 times. This ensures a more reliable estimate of the
performance of the models.

Following the same approach as Hu et al. [2015], Zhou et al. [2017] and Nogueira et al. [2017]
a stratified 5-fold cross validation strategy is used for the UC-Merced data set. First, the data is
split in 5 stratified sets. Subsequently, the models are trained (and fine-tuned) on 4 out of the 5
folds and evaluated on the one split which was left out. The process of training and testing the
models can be repeated 5 times, where every fold is used as test set exactly one time. K-fold cross-
validation generates a reliable estimate utilising all data available, which is especially beneficial in
scenarios with a small amount of data.

4.2 Model & Parameter Selection

Scenario I and II can be divided into three components: (fine-tuning) pre-trained CNNs, feature
coding, and classification. This section will cover the selection of models and parameters for each
of these components.

4.2.1 Pre-trained Convolutional Neural Networks

The fine-tuned CNN is a crucial part of the models in this work. Hence, three pre-trained CNN
architectures are tested, where after one is chosen as feature extractor for scenario I and scenario
II. The three networks used in this work are: VGG-16, InceptionV3, and Xception. The three
networks are trained on data from ImageNet [Russakovsky et al., 2015], which contains over 14
million images and over 20,000 different object classes (e.g. chain saw, volcano, folding chair).
These networks are chosen as they showed promising results on the ImageNet test data set and
on various aerial imagery benchmark data sets. While selecting the networks, only networks were
considered which are available directly through the deep learning framework used in this work
(see section 4.4). First, VGG-16 is chosen as it is implemented in numerous remote sensing image
classification papers. The inclusion of VGG-16 enables cross comparison to other literature and
is a safe choice as it has proven to be successful in a wide domain op applications. The other two
networks, InceptionV3 and Xception, achieved relatively high accuracy in the ImageNet challenge
while keeping their respective network sizes in check. Appendix A summarises the performance
and size of the available networks through the deep learning framework used in this work.

Before training the networks, the fully connected layers (at the end of the networks) are replaced

24

CHAPTER 4. EXPERIMENTAL SETUP

by equivalent randomly initialised layers. Only the last fully connected layer is replaced by a layer
which size equals the amount of classes in the data set (i.e. 2 for roof shape, 3 for roof material
and 21 for UC-Merced). Further, a number of layers are frozen (i.e. weights cannot be trained),
which speeds up the training process significantly and reduces the memory consumption. During
fine-tuning the networks, 30% of the train data set is used as validation set and only the network is
saved which achieves the best accuracy on the validation data set. This measure prevents potential
diminished results due to overfitting on the training data. Further, one iteration of training is
defined as a full cycle of training over all images in the training data set. The batch size during
training (the amount of images fed to the network at once) is set to 16. While a higher batch
size might have been preferable, 16 was the highest batch size possible without causing memory
shortages. Before feeding the batches of images to the networks, the images are pre-processed in
same way as the original images the networks are trained on. Stochastic Gradient Descent is used as
optimiser for all models with cross entropy loss as loss function. Preliminary experimenting showed
that passing weights to the the loss function during training slightly increased the accuracy on the
training set (see appendix B for more detailed results). Hence, in training the Sint Maarten data
sets weights are set equal to inverse of the relative frequency of each class. Since the experiments
are repeated a number of times, training the CNNs is already a very time consuming process.
Hence, due to the computational and time limitations, no further hyper-parameter optimisation is
performed. After training the networks, only one pre-trained network is used as feature extractor
for the proposed scenarios. Taking all networks in consideration would take too much time as all
steps have to be repeated for each model.

VGG-16

The VGG-16 network was introduced in the work of [Simonyan and Zisserman, 2014]. It placed
second in the ImageNet challenge 2014 in the classification category and first in the object detection
category. The network is 23 layers deep, which mainly are convolutional and pooling layers. The
convolutional and pooling layers are structured in 5 blocks, where 2 or 3 convolutional layers are
followed by one pooling layer. A summary of the full VGG-16 architecture is shown in appendix
C.1. When fine-tuning the network, the first 3 blocks (i.e. the first 10 layers) are frozen. The
network is trained for 60 iterations, with a learning rate of 0.001. After 15 train iterations, the
network is saved which achieves the highest classification accuracy on the validation data set.
Before feeding the images into the network, the images are re-sized to 224×224. Further, VGG-16
requires the input channels to be ordered as Blue Green Red (instead of the conventional order
Red Green Blue) and the mean pixel of the images used to train VGG-16 (from ImageNet) is
subtracted from all images.

InceptionV3

InceptionV3 [Szegedy et al., 2016] is the third revision of the Inception CNN architectures (also
known as GoogLeNet) and came in second in the ImageNet classification challenge in 2015. Incep-
tionV3 is the deepest network used in this work, with a total of 314 layers. Despite the fact that
InceptionV3 is much deeper than VGG-16, it has less (trainable) parameters. The network is made
up of 11 so-called inception blocks. In a inception block, a single input is connected to several
convolutional layers in parallel. After the convolutional layers in the inception block transformed
the input, it is concatenated into a single output. A simplified example of an inception block is
shown in figure 4.2. The full InceptionV3 architecture is summarised in appendix C.2. During
training, the first 9 out of 11 inceptions blocks (i.e. first 249 layers) are frozen. Just as VGG-16,
Inception is trained for 60 iterations and after 15 iterations the model is saved which achieves the
highest classification accuracy on the validation data set. During preliminary testing the training
loss of Inception converged very slowly. Hence, a learning rate of 0.01 is used during the first 15
iterations and 0.001 during the remaining 45 iterations. The required input size of the images for

25

CHAPTER 4. EXPERIMENTAL SETUP

InceptionV3 is 299× 299 pixels and all pixel values are normalised between -1 and 1.

Figure 4.2: Simplified example of an inception block (source: Chollet [2017])

Xception

The third pre-trained network used is the Xception CNN [Chollet, 2017]. Of the three networks
used in this paper, Xception achieved the highest classification accuracy on the ImageNet data
set. The network consists of 134 layers. Xception makes use of blocks similar to InceptionV3’s
inception blocks, denotes as extreme inception blocks (hence its name). The filters within normal
convolutional layers map the correlation between the pixels across all input channels (also referred
to as depth in section 2.2). Xception modules make use of depth-wise separable convolution, i.e.
a filter is applied to each channel separately. A summary of the complete Xception network is
shown in appendix C.3. During training, the first 10 out of 14 xceptions blocks (i.e. first 95 layers)
are frozen. Preliminary tests showed that the model’s loss converged relatively slowly compared
to the other models. Therefore, Xception is trained for 100 iterations; 30 iterations with training
rate of 0.01, and 70 with a training rate of 0.001. Again, after the initial 30 iterations the model
with the highest classification accuracy on the validation set is saved to counter overfitting. The
required input size and pre-processing steps for Xception are the same as the ones for InceptionV3,
respectively 299× 299 pixels and normalisation between -1 and 1.

4.2.2 Encoding

In scenario I, convolutional features are encoded using the feature coding algorithms presented
in section 2.3. BOW, VLAD, and LLC depend on K-means clustering for the construction of a
codebook, and IFK uses a Gaussian Mixture Model to encode the features. Due to the computation
time needed to encode the features, no parameters are tuned in this step. Thus, the parameters
are set based on previous works. Hu et al. [2015] set the number of clusters for BOW, VLAD, and
LLC to respectively 1000, 100 and 10000, and the number of components in the GMM for IFK to
100. Moreover, the same parameters are used for BOW, VLAD, IFK by Zhou et al. [2017]. Except
for LLC, the same parameters are used in this work. The number of clusters in LLC is restricted
by computational limitations, as a high number of clusters leads to very high dimensional LLC
features. Hence, the number of clusters for the LLC features is also set to 100. Before encoding,
the extracted convolutional features are normalised using L2-normalisation. Due to the limitation
in physical memory and to enhance computation time, the K-means clusters and the GMM are
fit on the original (non-augmented) training images only. Furthermore, the SVM is trained on a
augmented data set which is only two times the size of the original training data (i.e. each original
training image is included twice).

26

CHAPTER 4. EXPERIMENTAL SETUP

4.2.3 Classification

The last step in scenario I and scenario II is classification. Both make use of a SVM with the
same parameter settings, despite the fact that both scenarios are structured differently. Scenario
II also makes use of a RF classifier. In scenario I, the classifiers are trained on the coded features.
In scenario II, the classifiers are trained on the features extracted from the last fully connected
layer. Just as the SVM in scenario I, the RF and SVM are only trained on an augmented data
set which is two times the size of the data set.

Support Vector Machine

SVM is widely implemented in combination with CNNs. Despite the fact that SVM are able to
use various non-linear kernels, mainly simple linear SVMs are used in combination with features
extracted from CNNs. In this work the same parameters are used as in Nogueira et al. [2017],
which uses a linear SVM with regularisation parameter C = 1.

Random Forest

The RF algorithm has several parameters that can be set during training. Parameters of RF
include the number of trees in the forest and several stopping criteria parameters, which influence
the depth of the trees. In this work 4 parameters are tuned for the RF classifier: number of trees,
minimum samples required at split, minimum samples required at each child node, maximum
features, and maximum depth of the tree. The distributions for said parameters are shown in
table 4.1

Parameter Values

Number of trees [100, 200, 400, 800, 1600]
Minimum samples at split [2, 5, 10]
minimum samples at leaf [1, 2, 4]

maximum features [sqrt, log2]
Max depth [20, 40, 60, 80, 100, None]

Table 4.1: Distributions of the selected parameters settings used in the Random Search

Since each experiment must be repeated 10 times for three data sets, a grid search (i.e. testing
all possible combinations) over all 540 parameter combinations is unfeasible. Hence, another
parameter optimisation strategy is used, called Random Search. Random Search [Bergstra and
Bengio, 2012] samples a certain number of parameter settings of a distribution of parameters
and evaluates the selected parameters using K-fold cross validation. Bergstra and Bengio showed
that Random Search with roughly 60 randomly drawn parameter configurations found models
performing as good as using grid search. Furthermore, when giving Random Search as much
computational resources as grid search, Random Search is able to achieve better results as it is
able to traverse a larger parameter setting space.

In this work, the sampled parameters are evaluated using cross validation with 3 folds, where in
each fold one set is used for validation. The parameter configuration achieving the highest average
accuracy over the 3 folds is used to train a RF on the complete train set. In the experiments
the number of iterations of the random search (the number of configurations drawn) is set to 60.
A total of 180 (3 folds multiplied by 60 parameter settings) random forests are trained during
parameter tuning, which is three times less than the amount of random forest trained in grid
search (without cross validation).

27

CHAPTER 4. EXPERIMENTAL SETUP

4.3 Background on Evaluation Metrics

This section will discuss the performance metrics and statistical tests used to evaluate the models.
Performance metrics are used to measure the performance classification models. Five performance
metrics are used in this work: accuracy, precision, recall, f1-score and kappa. To compare the
performance metrics, two statistical tests are introduced: the Friedman test and the Wilcoxon
test.

4.3.1 Performance Metrics

Figure 4.3: Confusion matrix of a binary classification problem

In a binary classification problem, a prediction can be either a True Positive (TP), False
Positive (FP), True Negative (TN), or False Negative (FN). Where TP denotes the cases which
are positive and predicted as positive, FP the cases which are positive and predicted as negative,
TN the cases which are negative and predicted as negative, and FN the cases which are negative
and predicted positive. These type of predictions are visualised in figure 4.3.

The simplest classification performance measurement is accuracy, which is defined as the ratio
of the number of correctly predicted cases to the total number of cases. Then, using the terminology
introduced, accuracy A is given by the equation:

A =
TP + TN

TP + FP + TN + FN
.

Accuracy is easy to understand and can be used for both binary and multi-class classification
problems. However, in imbalanced data sets accuracy could give an unfair representation of
classification performance. For example, in a binary classification problem where 90% of the
samples are of the same class, simply assigning all cases to that class would already achieve an
accuracy of 90%.

Therefore, we introduce three other metrics, which will be used to asses the per-class classifica-
tion performance: precision, recall and the F1-score. Precision indicates how many of the positive
predicted cases are correctly predicted, and recall expresses the fraction of all positive cases which
are correctly predicted. These metrics are captured within the F1 metric, which is the harmonic

28

CHAPTER 4. EXPERIMENTAL SETUP

mean of precision and recall. Precision (P), recall (R) and the F1-score (F1) are obtained by
respectively:

P =
TP

TP + FP
,

R =
TP

TP + FN
,

and

F1 = 2 ∗ P ∗R
P +R

.

F1, recall, and precision, while valuable metrics for binary classification problems, should not
be used for multi-class classification problems [Powers, 2015], as they could be biased (just as
accuracy) due to class imbalances.

The third and last evaluation metric we introduce is the Cohen Kappa [Cohen, 1960], hereafter
referred to as Kappa. Kappa adjusts the accuracy score for the possibility of agreement (between
the predicted and actual scores) when the labels would be randomly assigned. Kappa K and
expected agreement Ae can be obtained as follows:

K =
A−Ae
1−Ae

,

Ae =
1

n2

C∑
i=1

pi,+p+,i,

where

pi,+ =

C∑
j=1

pi,j

,

pi,+ =

C∑
j=1

pj,i.

In a classification problem with C classes, pi,j denotes the frequency of the number of cases
which true label is i and the predicted label is j. Kappa allows evaluation of models using a single
metric, while being more robust to class imbalance. However, Kappa is more difficult to interpret
than accuracy as it can range from -1 to 1. Arbitrary guidelines exist instructing how to interpret
the Kappa scores, such as the ones by Landis and Koch [1977], McHugh [2012] and Fleiss et al.
[2013], which are shown in table 4.2. The differences among these interpretations underline the
ambiguity in the kappa. Moreover, the interpretation of the Kappa depends on the context of the
classification problem. McHugh argues that the aforementioned interpretations might be to lenient
for health research, where decisions based on the outcomes might have serious ramifications, and
proposes a more strict interpretation for health research.

4.3.2 Statistical Tests

The introduced evaluation metrics are computed for all the models on multiple samples of the
data. Hence, statistical tests must indicate whether the metrics among models actually differs.
Often, paired t-test or repeated ANOVA are used to compare the performance among multiple
classifiers. However, these approaches assume that the difference in the metrics between multiple
models is distributed normally and homogeneity of variance, which could hurt the robustness of
the comparison. Therefore, Demšar [2006] recommends to use non-parametric (i.e. no assumption
on underlying data distribution) statistical tests to compare the performance among classifiers.

29

CHAPTER 4. EXPERIMENTAL SETUP

Landis and Koch [1977] McHugh [2012] Fleiss et al. [2013]

Kappa Level of agreement Kappa Level of agreement Kappa Level of agreement

<0 Poor <0.20 None <0.40 Poor
0.00-0.20 Slight 0.21-0.39 Minimal 0.40-0.75 Fair to good
0.21-0.40 Fair 0.40-0.59 Weak 0.75-1.00 Excellent
0.41-0.60 Moderate 0.60-0.79 Moderate
0.61-0.80 Substantial 0.80-0.90 Strong
0.81-1.00 Almost Perfect 0.90-1.00 Almost Perfect

Table 4.2: Interpretations of the Kappa score by Landis and Koch [1977], McHugh [2012] and
Fleiss et al. [2013]

Demšar advises to use the Wilcoxon signed-ranked [Wilcoxon, 1945] to compare of pairs of classi-
fiers, and the Friedman test [Friedman, 1937] for three or more classifiers.

Just as paired t-tests, the Wilcoxon test assumes that the data is paired (i.e. the classifiers
are tested on the same samples) and sampled randomly. Further, the Wilcoxon tests assume
continuous dependent variables and symmetrically distributed differences between the performance
of the two classifiers. The Wilcoxon test computes a statistic Tw for a set of differences d =
(d1, ..., DN), where N is the number of samples on which the two classifiers are tested. di is the
difference between the scores of the two classifiers on the ith sample. Next, the differences d are
ranked (highest difference is assigned 1, second highest 2, etc.) based on their absolute value (i.e.
|di|). In case of ties between differences, the average rank is assigned. Subsequently, the ranks for
which di is positive (i.e. classifier 1 outperforms classifier 2) are summed, and the ranks for which
di is negative (i.e. classifier 2 outperforms classifier 1) are summed, denoted by respectively S+

and S−, where the ranks for which di is 0 are divided equally among S+ and S−:

S+ =
∑
∀di>0

rank(di) +
1

2

∑
∀di=0

rank(di),

S− =
∑
∀di<0

rank(di) +
1

2

∑
∀di=0

rank(di).

The test statistic Tw is equal to the minimum of the two sums Tw = min (S+, S−). Given Tw and
N ,the pwilcoxon-value can be found, indicating the significance of the difference between the two
classifiers.

The Friedman test ranks the classifiers for each data set independently. The classifier with
the highest score gets rank 1, the second highest rank 2, etc.. Similar to the Wilcoxon test, tied
performances will be assigned the average rank. Lets denote the rank of classifier j ∈ (1, ...,K) on
sample i ∈ (1, ..., N) as rji , and the average rank of classifier j as R̄j :

R̄j =
1

N

N∑
i=1

rji .

Then, the Friedman test statistic TF is obtained as follows:

tF =
12N

K(K + 1)

(K∑
j=1

R̄j
2 − K(K + 1)2

4

)
.

Subsequently, for a given TF , K and N a pfriedman-value can be computed.

30

CHAPTER 4. EXPERIMENTAL SETUP

4.4 Implementation Details

Training a CNN is a computationally expensive process and can be quite time-consuming. How-
ever, CNN operations (training and prediction) can be significantly accelerated using GPUs. In this
work, all experiments are performed on Google Colaboratory1, which provides a GPU-accelerated
Python environment accessible for research and education for up to 12 hours in a single session.
Google Colaboratory makes use of a Tesla K80 GPU with 12 GB of memory, a single-core 2.3Ghz
Intel Xeon CPU, and 12 GB of RAM. All data pre-processing is performed on a machine with a
quad-core 1.8Ghz Intel i7-8550U CPU and 16 GB of RAM.

QGIS [QGIS Development Team, 2009], an open-source geographical information system, is
used to pre-process the OpenStreetMap data (data and feature selection). The individual buildings
are clipped from the orthoimagery of Sint Maarten using the GDAL [GDAL/OGR contributors,
2018] package for Python.

Using the Google Colaboratory platform restricts the choice of deep learning framework. Hence,
for all deep learning performed in this work, the Keras module [Chollet et al., 2015] is used
with TensorFlow [Abadi et al., 2015] back-end. Keras provides a high-level interface for several
deep learning libraries, such as TensorFlow. The encoding algorithms are implemented using
a combination of mathematical and machine learning packages, i.e. SciPy [Jones et al., 2001],
NumPy [Oliphant, 2006], and Scikit-learn [Pedregosa et al., 2011]. Scikit-learn also provides the
implementations of the classification algorithms used in this work.

All code to run the experiments presented in this work is publicly available2.

1https://colab.research.google.com/
2https://github.com/bartvandriel/thesis

31

https://colab.research.google.com/
https://github.com/bartvandriel/thesis

Chapter 5

Results

This chapter presents the results obtained by the experiments described in the previous chapter.
Section 5.1 summarises the training process of the pre-trained networks and the classification
results. Based on these results, one network is chosen as feature extractor in scenario I and
scenario II. Section 5.2 and section 5.3 present respectively the results for scenario I and scenario
II. A complete overview of all performance metrics of all models for all three data sets is shown
in appendix D.

5.1 Pre-trained networks

This section presents the results of the three fine-tuned networks. As explained in the previous
chapter, the network with the best overall performance will be used as feature extractor for the
proposed scenarios. Figure 5.1 shows the mean accuracy and loss on the train (solid lines) and
validation set (dashed lines) during the training process for: (a) the roof shape data set, (b) the
roof material data, and (c) the UC-Merced data set.

The behaviour of the validation and training loss during training is similar among the data sets.
For all data sets, the training loss of VGG-16 converged faster than the other networks, despite the
lower learning rate in the first epochs. For the roof shape and roof material data set, the networks
tend to overfit on the train data, as the validation loss starts to increase after 20-40 epochs (while
training loss is still decreasing). VGG-16 seems to achieve a slightly lower loss over all epochs,
closely followed by the Xception network. The mean accuracy of the models during training shows
similar patterns to the mean loss. VGG-16 tends to achieve the highest mean accuracy on the
validation set on the roof shape and roof material data set. For the UC-Merced data set, Xception
achieves similar classification accuracy compared to VGG-16. However, Xception tends to learn
the material slower than the VGG-16 network. Further, InceptionV3 converges to the worst loss
and accuracy on the training and validation set. On the roof material data set, during training of
InceptionV3, the validation loss and accuracy did not converge at all.

The mean and standard deviations of the accuracy and Kappa score on the data sets are shown
in respectively table 5.1 and table 5.2. The difference between the accuracy and Kappa scores
scores among the three networks is significant (pfriedman < 0.01 and all pwilcoxon < 0.01) for the
roof shape and roof material data set. However, for the UC-Merced data the differences are not
significant at a 5% confidence level (pfriedman = 0.056). At a 10% confidence level the differences
between Inception and the other models are significant, but there is still no significant difference
between VGG and Xception (pwilcoxon = 0.593). A complete overview of the Friedman and
Wilcoxon statistical tests for the Kappa and accuracy scores are shown in appendix E.1. VGG-16

33

CHAPTER 5. RESULTS

(a) Roof shape

(b) Roof material

(c) UC-Merced

Figure 5.1: Mean loss and accuracy during fine-tuning of the pre-trained networks on (a) the roof
shape data set, (b) the roof material data set, and (c) the UC-Merced data set.

34

CHAPTER 5. RESULTS

achieves the highest accuracy and Kappa scores on the roof shape and roof material data, closely
followed by Xception. On the UC-Merced data, the accuracy and Kappa scores are similar for
VGG-16 and Xception (i.e. no significant difference). On all data sets, InceptionV3 achieves the
lowest mean accuracy and Kappa scores. Table 5.3 shows the mean and standard deviation of the
per-class F1-scores for respectively the roof shape data and roof material data. VGG-16 tend to
have a higher mean per-class F1 than the other networks on all classes, indicating a better balance
between precision and recall.

Overall, VGG-16 tends to yield the highest accuracy, Kappa and per-class F1-score among the
data sets. Hence, it is chosen as feature extractor for the scenarios as described in chapter 4.

VGG Inception Xception

shape 0.88 ± 0.01 0.75 ± 0.03 0.84 ± 0.02
material 0.69 ± 0.00 0.61 ± 0.01 0.65 ± 0.01

UC-Merced 0.90 ± 0.03 0.86 ± 0.03 0.91 ± 0.03

Table 5.1: Mean and standard deviation of the accuracy of the fine-tuned networks.

VGG Inception Xception

shape 0.72 ± 0.02 0.43 ± 0.07 0.63 ± 0.06
material 0.41 ± 0.01 0.10 ± 0.04 0.27 ± 0.04

UC-Merced 0.90 ± 0.03 0.86 ± 0.04 0.90 ± 0.03

Table 5.2: Mean and standard deviation of the Kappa score of the fine-tuned networks.

VGG Inception Xception

Shape flat 0.91 ± 0.01 0.82 ± 0.02 0.89 ± 0.01
hipped 0.81 ± 0.01 0.61 ± 0.06 0.74 ± 0.05

Material concrete 0.58 ± 0.03 0.22 ± 0.09 0.41 ± 0.10
metal 0.78 ± 0.01 0.75 ± 0.00 0.76 ± 0.01
roof tiles 0.47 ± 0.04 0.03 ± 0.03 0.30 ± 0.11

Table 5.3: Mean and standard deviation of the per-class F1-score of the fine-tuned networks.

5.2 Feature coding

In this section, the results of the feature coding algorithms are presented. First, image features are
extracted from the last convolutional layer of the fine-tuned VGG-16, whereafter these features
are encoded using the four coding schemes presented in chapter 2. Finally, the features are used
to train a linear SVM. In addition to the four coding schemes, the extracted features are also fed
directly to the SVM, this approach is referred to as NONE.

Table 5.4 and table 5.2 show respectively the accuracy and Kappa scores of the models described
above and VGG-16 as a base line. Overall, there is a significant difference in the performance
among the models presented in the tables (pfriedman < 0.01). Further, for the roof shape and roof
material data set the performance differences between most of the models’ accuracy and Kappa
scores are significant (pwilcoxon < 0.01), except between VLAD and VGG-16 (pwilcoxon > 0.10).
For the UC-Merced data set, none of the differences between the coding schemes and VGG-16 is

35

CHAPTER 5. RESULTS

significant at a 5% confidence level (pwilcoxon > 0.05). Only the differences between NONE and
VGG-16, and, IFK and VGG-16 are significant at a 10% confidence level (respectively pwilcoxon =
0.08 and pwilcoxon = 0.07). A complete overview of all pfriedman and pair-wise pwilcoxon values for
the aforementioned models can be found in appendix E.2. On the roof shape and roof material
data set, VLAD and VGG-16 achieve the highest accuracy and Kappa scores. On the UC-Merced
data set, VLAD and NONE achieve the highest accuracy and Kappa scores, followed by the fine-
tuned VGG-16 network and BOW. The per-class F1-scores for the roof shape and roof material
data sets are shown in table 5.6. The F1-scores are in line with the corresponding accuracy and
Kappa scores, VLAD and VGG-16 tend to achieve the highest per-class accuracy scores.

NONE BOW VLAD

Shape 0.86 ± 0.01 0.85 ± 0.01 0.87 ± 0.00
Material 0.66 ± 0.01 0.66 ± 0.01 0.69 ± 0.01

UC-merced 0.92 ± 0.01 0.89 ± 0.03 0.92 ± 0.01

LLC IFK VGG

Shape 0.84 ± 0.01 0.84 ± 0.01 0.88 ± 0.01
Material 0.64 ± 0.01 0.65 ± 0.01 0.69 ± 0.00

UC-merced 0.90 ± 0.02 0.86 ± 0.02 0.90 ± 0.03

Table 5.4: Mean and standard deviation of the accuracy of the models of scenario I

NONE BOW VLAD

Shape 0.86 ± 0.01 0.85 ± 0.01 0.87 ± 0.00
Material 0.66 ± 0.01 0.66 ± 0.01 0.69 ± 0.01

UC-merced 0.92 ± 0.01 0.89 ± 0.03 0.92 ± 0.01

LLC IFK VGG

Shape 0.84 ± 0.01 0.84 ± 0.01 0.88 ± 0.01
Material 0.64 ± 0.01 0.65 ± 0.01 0.69 ± 0.00

UC-merced 0.90 ± 0.02 0.86 ± 0.02 0.90 ± 0.03

Table 5.5: Mean and standard deviation of the Kappa score of the models of scenario I

36

CHAPTER 5. RESULTS

NONE BOW VLAD

Shape flat 0.90 ± 0.01 0.89 ± 0.01 0.91 ± 0.00
hipped 0.79 ± 0.02 0.78 ± 0.02 0.81 ± 0.01

LLC IFK VGG

flat 0.88 ± 0.01 0.88 ± 0.01 0.91 ± 0.01
hipped 0.77 ± 0.01 0.73 ± 0.02 0.81 ± 0.01

NONE BOW VLAD

Material concrete 0.56 ± 0.03 0.55 ± 0.02 0.59 ± 0.02
metal 0.74 ± 0.01 0.74 ± 0.01 0.77 ± 0.01

roof tiles 0.44 ± 0.02 0.44 ± 0.03 0.48 ± 0.03

LLC IFK VGG

concrete 0.54 ± 0.03 0.47 ± 0.04 0.58 ± 0.03
metal 0.73 ± 0.01 0.76 ± 0.00 0.78 ± 0.01

roof tiles 0.40 ± 0.02 0.30 ± 0.05 0.47 ± 0.04

Table 5.6: Mean and standard deviation of the per-class F1-score of the models of scenario I

5.3 Classifiers

This section presents the results of the models from scenario II. The image features are extracted
from the last fully connected layer of the fine-tuned VGG-16 network, and final classification is
done by means of a linear SVM and a RF. The parameter tuning for the RF is done via a random
search over a set of parameter settings, the final parameter settings for each fold and each data
set can be found in the appendix (table F.1).

Table 5.7 and table 5.8 show the accuracy and Kappa metrics of the classifiers (and VGG as
a base line) over the three data sets. On all three data sets, the differences between the mean
accuracies and Kappa scores are significant when comparing RF, SVM and VGG-16 (pfriedman <
0.05). For each data set, the differences between SVM’ accuracy and Kappa score, and the scores
of the other models (RF and VGG-16) are significant (all pwilcoxon < 0.05, except for the UC-
Merced data set with pwilcoxon < 0.10), and VGG-16 and RF tend to achieve equivalent results
(pwilcoxon > 0.10). A complete overview of the statistical tests is given in appendix E.3.

On the roof shape and roof material data, RF outperforms SVM. On the UC-Merced data
however, SVM outperforms RF. The per-class F1-scores are shown in table 5.9 for the roof shape
and roof material data. Generally, all F1-scores lie very close to each other across the different
classifiers. Only for the metal class in the roof material data set, the F1-scores are considerably
lower using SVM compared to the other classifiers.

RF SVM VGG

Shape 0.87 ± 0.01 0.86 ± 0.02 0.88 ± 0.01
Material 0.70 ± 0.01 0.64 ± 0.02 0.69 ± 0.00

UC-Merced 0.89 ± 0.02 0.92 ± 0.02 0.90 ± 0.03

Table 5.7: Mean and standard deviation of the accuracy of the models of scenario II

37

RF SVM VGG

Shape 0.87 ± 0.01 0.86 ± 0.02 0.88 ± 0.01
Material 0.70 ± 0.01 0.64 ± 0.02 0.69 ± 0.00

UC-Merced 0.89 ± 0.02 0.92 ± 0.02 0.90 ± 0.03

Table 5.8: Mean and standard deviation of the Kappa score of the models of scenario II

RF SVM VGG

Shape flat 0.91 ± 0.01 0.89 ± 0.01 0.91 ± 0.01
hipped 0.81 ± 0.01 0.79 ± 0.02 0.81 ± 0.01

Material concrete 0.56 ± 0.02 0.56 ± 0.03 0.58 ± 0.03
metal 0.79 ± 0.00 0.73 ± 0.02 0.78 ± 0.01

roof tiles 0.45 ± 0.03 0.45 ± 0.02 0.47 ± 0.04

Table 5.9: Mean and standard deviation of the per-class F1-score of the models of scenario II

Chapter 6

Discussion

In this chapter the results will be discussed with respect to the research questions introduced in
chapter 1. The main research question of this work is as follows:

• How can convolutional features extracted from pre-trained Convolutional Neural Networks
be exploited to classify remotely sensed imagery?

This question is very broad and other literature explored many ways how to improve the
classification performance of CNNs. Hence, two gaps in the existing literature are identified,
which opens a window of opportunity for improving the state-of-the-art. This work aims to fill
these gaps by answering the following two research questions:

1. Can feature encoding of convolutional features improve the classification performance of
Convolutional Neural Networks?

2. Can Random Forests improve the classification performance of Convolutional Neural Net-
works?

Besides discussing the results with respect to these research questions, this chapter takes a
closer look at the best classification results of the Sint Maarten and UC-Merced data sets and
provides additional insights with respect to the implementation of such models in practice.

6.1 Exploitation of CNN features

This section discusses whether the two proposed scenarios improve the classification performance
compared to the base line, the fine-tuned VGG-16. Table 6.1 and table 6.2 show the difference
(in %) between the various coding schemes, classifiers, and the base line. Each cell indicates
the difference in mean accuracy between the model indicated by the row value and the model
indicated by the column value. For instance, BOW’s mean accuracy is 2.4% lower than the mean
accuracy by VGG-16 for the roof shape data set. The asterisks denote respectively whether the
pwilcoxon-value of the difference between the two models is lower than respectively 0.01 (***), 0.05
(**), and 0.10 (*).

None of the feature coding schemes increase the classification accuracy significantly. Only
VLAD achieves equivalent performance compared to the VGG-16 base line on all three data sets.
Relatively simple feature coding algorithms, BOW and VLAD achieve the best results, while

39

CHAPTER 6. DISCUSSION

NONE BOW VLAD LLC IFK VGG
NONE - 1.0*** -1.1*** 1.8*** 2.6*** -1.4***
BOW -1.0*** - -2.2*** 0.8** 1.5*** -2.4***
VLAD 1.1*** 2.2*** - 3.0*** 3.7*** -0.2
LLC -1.8*** -0.8** -3.0*** - 0.7** -3.2***
IFK -2.6*** -1.5*** -3.7*** -0.7** - -3.9***
VGG 1.4*** 2.4*** 0.2 3.2*** 3.9*** -

(a) Shape

NONE BOW VLAD LLC IFK VGG
NONE - -0.1 -3.8*** 1.9*** 0.1 -4.0***
BOW 0.1 - -3.6*** 2.1*** 0.3 -3.8***
VLAD 3.8*** 3.6*** - 5.7*** 3.9*** -0.2
LLC -1.9*** -2.1*** -5.7*** - -1.8*** -5.9***
IFK -0.1 -0.3 -3.9*** 1.8*** - -4.1***
VGG 4.0*** 3.8*** 0.2 5.9*** 4.1*** -

(b) Material

NONE BOW VLAD LLC IFK VGG

NONE - 1.3** 0.1 1.2** 2.8** 0.8*
BOW -1.3** - -1.2 -0.1 1.5** -0.5
VLAD -0.1 1.2 - 1.1** 2.7** 0.7
LLC -1.2** 0.1 -1.1** - 1.6* -0.4
IFK -2.8** -1.5** -2.7** -1.6* - -2.0*
VGG -0.8* 0.5 -0.7 0.4 2.0* -

(c) UC-Merced

Table 6.1: Differences between the accuracy of the coding algorithms and the VGG-16 base line
(in %). The asterisks denote whether the pwilcoxon-value is lower than 0.01 (***), 0.05 (**), and
0.10 (*).

RF SVM VGG

RF - 1.8*** -0.1
SVM -1.8*** - -2.0***
VGG 0.1 2.0*** -

(a) Shape

RF SVM VGG

RF - 6.1*** 0.9**
SVM -6.1*** - -5.2***
VGG -0.9** 5.2*** -

(b) Material

RF SVM VGG

RF - -1.3** -0.4
SVM 1.3** - 0.8*
VGG 0.4 -0.8* -

(c) UC-Merced

Table 6.2: Differences between the accuracy of the SVM, RF and the VGG-16 base line (in %).
The asterisks denote whether the pwilcoxon-value is lower than 0.01 (***), 0.05 (**), and 0.10 (*).

40

CHAPTER 6. DISCUSSION

the most complex coding scheme, IFK, achieves the lowest result. The results of RF and SVM
trained on the features extracted from the last fully connected layer, neither show any considerable
increases in classification accuracy on the three data sets. RF scores equivalent accuracy on the
roof shape and UC-Merced data set, and achieves slightly higher accuracy on the roof material
data set. SVM performs significantly worse on the two Sint Maarten data sets, while achieving
similar accuracy on the UC-Merced data set. Based on these results, one could conclude that
feature coding does not improve the classification performance of CNNs and RF could potentially
improve the classification performance of CNNs.

However, one could argue that the comparison between the VGG-16 and the alternative ap-
proaches is unfair, as the VGG-16 model is trained on more augmented data due to the possibility
of batch-wise training. While there exist adaptations of SVM [Diehl and Cauwenberghs, 2003,
Nikitidis et al., 2010] and RF [Saffari et al., 2009] which are able to be trained on batches of
data, these are not (yet) available in mainstream machine- and deep-learning packages. Thus, the
inability of batch-wise training can be seen as a limitation inherent to the alternative approaches.
Due to this shortcoming, the extracted image features of all training images have to be able to fit
in the machine’s memory.

The alternative approaches introduce new steps into the classification process. This makes
classification more complex and time consuming, which may be less important in a research en-
vironment, but very unpractical in real world applications. The base line VGG-16 can be trained
using batches of images and predicts new imagery in a single step. The proposed scenarios re-
quires similar time to extract the features, but also requires training additional feature coding
schemes and classifiers, making it more computational and time expensive then conventional CNN
classification strategies. The extra complexity and time-consumption of using these alternative
strategy do not outweigh the potential (small) improvements in classification performance. This
more practical look at image classification pipelines is something that is often missing in the related
literature.

6.2 Per data set evaluation

While the research questions in this work are more focused on exploring new strategies to improve
classification performance, the main objective is to produce a model which predicts the roof shape
and roof material of the buildings as good as possible. Therefore, this section will take a closer
look at the best performing model. Overall, none of the models beats the fine-tuned VGG-16
performance by a considerable margin. Hence, this section only focuses on these results. The
remainder of this section is structured as follows: first, the results of the Sint Maarten data sets
will be discussed and we will provide some additional insights. Secondly, the results of the model
on the UC-Merced data set will be discussed with respect to the results in other papers.

6.2.1 Sint Maarten

The data set of Sint Maarten contains two type of classes describing buildings: roof shape and roof
material. The labels for roof shape and roof material are respectively flat and hip; and concrete,
metal and roof tiles. The roof shape is more easily to distinguish then the roof material of a
building, as illustrated in chapter 3. Furthermore, both data sets are moderately imbalanced. The
relative frequencies of flat and hipped are respectively 65/35%, and of concrete, metal and roof
tiles are respectively 28/58/14%.

The F1-scores shown in table 5.3 already indicate that the class imbalance might affect the
results of the model. On the roof shape data set, the F1-score of the majority class (i.e. flat,
0.91) is considerably higher than the minority class (i.e. hipped, 0.81). The F1-scores on the roof

41

CHAPTER 6. DISCUSSION

(a) Shape (b) Material

Figure 6.1: Confusion matrices of VGG-16 on the (a) roof shape and (b) roof material data set.

material data set follow the same trend: the F1-score of the majority class (i.e. metal, 0.78) is
highest one of the three, followed by the second largest class (i.e. concrete, 0.58) and the smallest
class (i.e. roof tiles, 0.47). This trend can also be seen in the the confusion matrices shown in
figure 6.1. The x- and y-axis denote respectively the true and predicted label. On the roof shape
data set, the relative frequency of the flat and hipped predicted samples is 69/31%. For the roof
material data set, these relative frequencies for concrete, metal and roof tiles are 20/71/9%. Thus,
the predictions are more skewed than the actual class distribution of the data sets, meaning that
this model overestimates the amount of buildings belonging to the majority class. This skewness
is particularly visible in the per-class recall scores, which are 0.94/0.76 and 0.50/0.86/0.38 for
respectively the roof shape and roof material data set, while the per-class precision scores are
relatively balanced, i.e. respectively 0.88/0.87 and 0.70/0.71/0.63.

This skewness due to imbalance can be explained by the way the models are optimised. During
training, the accuracy of the validation set is monitored and only the best performing network
is saved. Therefore, the models are optimised with regard to accuracy, which disadvantages the
minority class(es). Accuracy only measures whether a sample is predicted correct and does not
care about per class performance. Correcting for this imbalance, would hurt the overall accuracy.
Since predicting a sample as the majority class already has a higher probability of success than
predicting the samples as the minority class, a model optimised for accuracy tends to predict the
majority class more easily.

The effects of the class imbalance in the data sets are clearly visible in the results. The next
question is whether it actually matters to this specific problem. Some classification problems
require a very good precision or recall on a specific class, while the other class is less important.
On the other hand, in other classification problems one only cares about the overall accuracy. As
the experiments in this work only serve as a proof of concept and the data quality requirements
for future follow-up projects are not yet defined, it is unknown whether this trait is undesirable.
However, future projects should define the purpose and requirements of the predictions before
training the model.

The fine-tuned VGG-16 achieves an overall accuracy score of 88%, which exceeds the desired
result expressed prior to this work (achieving an accuracy of at least 85%). Furthermore, the
Kappa score, which can be seen as a better indicator of classification quality, is 72%. Following
the guidelines of Landis and Koch [1977], McHugh [2012] and Fleiss et al. [2013], the achieved
Kappa score can be interpreted as respectively Substantial, Moderate and Fair to good.

The roof material data set seems to be more difficult to classify compared to the roof shape

42

CHAPTER 6. DISCUSSION

data set. The mean accuracy is 69%, which is lower than the desired 85%. The poor classification
performance is also reflected in the Kappa score, which is only 41%. The Kappa score just falls
in the Moderate category by Landis and Koch [1977], Weak category by McHugh [2012], and Fair
to good category by Fleiss et al. [2013].

Performance
indicator

Shape Material

Kappa 0.72 0.41
Landis and Koch [1977] Substantial Moderate

McHugh [2012] Moderate Weak
Fleiss et al. [2013] Fair to good Fair to good

Table 6.3: Interpretations of the kappa score for the roof shape and roof material data set.

The Kappa scores and interpretations by the three guidelines are shown in table 6.3. Note
again that these guidelines are entirely arbitrary, although they might help the reader to better
understand the kappas score. The results also uncover the weakness of the interpretation by
Fleiss et al. [2013], which denotes both classifications as Fair to good, while the difference in their
respective Kappa scores is over 30%.

As mentioned in chapter 3, there is some uncertainty with respect to the quality of the class
labels. The buildings are labelled by many (untrained) volunteers. While the roof shape classes
are quite distinct, this is not always the case for the roof material classes, especially metal and
roof tiles. Mislabelled images have two consequences on the results. First, mislabelled images in
the train set deteriorate the performance of the classification model, as the model will learn the
wrong connections between imagery and labels. Secondly, mislabelled images in the test set result
in an incorrectness in the evaluation metrics, as predictions are wrongfully denoted as TP, FP,
TN and FN.

(a) Shape (b) Material

Figure 6.2: Performance of VGG-16 using various fractions of the total data set

In the experiments presented so far, only 10% of the data is used as train set. Training the
network on more data should always improve the performance of the model. However, labelling
new data is a time consuming and labour intensive process. For that reason, the VGG-16 is fine-
tuned using various fractions of the total data set for training. Figure 6.2 shows the mean accuracy
of the fine-tuned VGG-16 models trained on 5%, 10%, 20%, 40%, and 80% of total data set. For
equal comparison, the models are tested on the same images (which constitute 20% of the total

43

CHAPTER 6. DISCUSSION

data set). As expected, the accuracy increases over the data set. However, the marginal effect
of adding more train data decreases over the amount of train data. For example, the marginal
affect of increasing the fraction train data by 1% is 0.3845% per percent between 5% and 10%,
which diminishes to a mere 0.0378% increase in accuracy between 40% and 80%. A similar trend
is also visible for the roof material data (except between 10% and 20%). A complete overview of
the sensitivity of the accuracy to the amount of train data is shown in table 6.4.

From (%) To (%) Shape (%) Material (%)

0 5 21.3452 16.9510
5 10 0.3845 0.3527
10 20 0.1940 0.0672
20 40 0.0482 0.1087
40 80 0.0378 0.0435

Table 6.4: Increase in accuracy for a 1% increase in the fraction of data used for training

6.2.2 UC-Merced

Unlike the Sint Maarten data sets, the UC-Merced data set does not suffer from class imbalance.
It contains 2100 images equally divided into 21 classes. The confusion matrix of the predictions
for the UC-Merced data set is shown in figure 6.3. Overall, the fine-tuned VGG-16 network is
good in distinguishing between the different classes, where for 17 out of 21 classes more than
85% of the samples are correctly predicted. The model has more difficulty with similar classes,
such as: medium-residential, dense-residential and mobile-home park; and: runway and freeway.
Moreover, the fine-tuned VGG-16 achieves a mean accuracy of 90%. While this the performance
is pretty impressive, Nogueira et al. [2017] reported a higher mean accuracy (98%) with a similar
experimental setup. Equal to the experiment in this work, Nogueira et al. split the data set in 5
sets, where in each fold 3 sets are used as training, 1 for validation, and 1 for testing. Additional,
they also use Stochastic Gradient Descent with learning rate 0.001 for fine-tuning. They do not
specify the batch size during training. Final classification is done by a linear SVM with C = 1.
The implementation differs in the deep learning frame work used, they use the Caffe deep learning
framework instead of Keras.

The VGG-16 network is originally trained on ImageNet using the Caffe framework1. Keras
ported the original weights to be compatible to their own framework. In essence, if the weights
are ported perfectly, the Caffe and Keras version of the pre-trained VGG-16 should achieve equal
results. Hence, a small experiment is done using the Caffe framework for MATLAB. The pre-
trained VGG-16 networks (not fine-tuned) in Keras and Caffe are used to extract image features
from the UC-Merced data set. In both setups the features are extracted from the last fully
connected layer and final classification is done by the same linear SVM as used in the rest of this
work. The experiments are carried out using a stratified 5-fold cross-validation protocol, where
4 sets are used for training and 1 for testing. For fair comparison, the splits in the 5-fold cross-
validation are exactly the same for the Keras as the Caffe framework. In this experiment, the
Keras model and Caffe model achieve a mean accuracy of respectively 87.6 and 90.0, indicating a
performance difference between the Keras and Caffe models.

The reported accuracy by Nogueira et al. [2017], 98%, is achieved by extracting the features
using a fine-tuned VGG-16 and final classification by a linear SVM. An equivalent model in this
work achieved a mean accuracy of 92%, which denotes a 6% performance gap. The features
extracted by the VGG-16 used by Nogueira et al. are available on the authors website2, creating

1https://github.com/BVLC/caffe
2https://github.com/keillernogueira/exploit-cnn-rs

44

https://github.com/BVLC/caffe
https://github.com/keillernogueira/exploit-cnn-rs

CHAPTER 6. DISCUSSION

Figure 6.3: Confusion matrix of VGG-16 on the UC-Merced data set

45

CHAPTER 6. DISCUSSION

the possibility for further evaluation. A new experiment is set up in a similar fashion as described
before (stratified 5-fold cross-validation), the image features by Nogueira et al. are used to train
the same linear SVM as before. Using these image features, an accuracy is achieved of 95%. The
difference between the accuracy by Nogueira et al. (98%) and in the accuracy of this experiment
(95%) could be explained by a difference in the implementation of the SVM. However, due to the
absence of detailed implementation details or code, no definitive conclusion can be made.

At last, various hyper-parameters settings during training could be the source of the difference.
Training a CNN involves setting a lot of hyper-parameters. While the same learning rate is used,
other settings could have been different (e.g. batch-size, momentum). One notable difference is
that a number of layers are frozen during training in this work due to computational limitations,
which is not done in the referenced paper. Further, Nogueira et al. denote that more importance
is given to the final fully connected layer during training, a functionality currently unavailable in
Keras.

Hence, the performance difference could be explained by the choice of framework, the hyper-
parameter settings of the final classifier, and other hyper-parameter settings during training. The
uncertainty with respect to the underlying cause underlines the importance of openness concerning
the experiments to enable reproducible results. One major step in the right direction would be
making the code used for the experiments publicly available.

46

Chapter 7

Practical Implications

While chapter 6 discusses the results with respect to the specified research questions, this work
must be placed in the grand scheme of things. The NLRC data team, 510, investigates the possib-
ility of automating the mapping process currently done by many volunteers. This investigation has
two research directions; the first one focuses on automatically detecting and tracing buildings in
aerial imagery, the second one examines the possibility of automatically determining building char-
acteristics in imagery of buildings. This work falls within the second direction of the overarching
research.

Although the models in this work only classify roof material and roof shape, other building
characteristics could be valuable as well. For example, the construction material of walls could
be an indicator of building robustness against natural disasters and could be used as a variable
in damage predictions models. These predictions models could be used to enhance the efficiency
and effectiveness of humanitarian aid. Models classifying other characteristics can be constructed
in a similar fashion as the models presented in this work, where the key differences are the image
characteristics and the class labels. Classifying wall types is impossible using the imagery of
Sint Maarten currently available. The height from which the imagery is taken is too high, which
makes oblique viewpoints of buildings impossible. Furthermore, the roof shape labels used in this
work can be either hipped or flat. However, Partovi et al. [2017] breaks up the hipped class in
more specific classes (e.g. gable, half-hip, hip, pyramid). Shooting imagery from lower heights
(resulting in higher quality imagery) and always breaking up classes in more specific classes (as
labels can always be aggregated) may seem like a good solution, this is not necessarily the case;
shooting images from lower levels means that more images in total are needed to cover similar
areas of interest, and; breaking up classes could lead to an increase in time needed to label the
images. However, these examples emphasise the necessity of proper preparation prior to gathering
the data. Hence, the process of generating the data (i.e. imagery and labels) should be in close
collaboration with the intended end-user(s). Involving these stake holders late or insufficiently
could lead to a mismatch in expectations regarding the data, resulting in delays, increased costs,
or less effective models.

Using models to classify building types automatically drastically reduces the amount of manual
labelling to be done for large areas. On the other hand, using models increases the importance
of the quality of the labels. The problem of incorrectly labelled images is twofold: it could hurt
the classification performance of the models and the performance metrics could give a faulty im-
pression of the classification capability of the models. When a model, which is wrongfully deemed
of sufficient quality, is deployed, the model could generate labels with unknown characteristics.
Such unknown characteristics could have unintended side-effects when used for humanitarian aid
purposes, thereby potentially affecting the life of vulnerable people. Therefore, evaluation on a
fair representation of the images with corresponding class labels is very important.

47

CHAPTER 7. PRACTICAL IMPLICATIONS

CNNs have proven to be able to outperform human classification performance in both general
object classification [He et al., 2015] as in more specialised medical image classification [Haenssle
et al., 2018]. However, the potential of CNNs can only be fully utilised given sufficient data in
terms of quality and quantity. The labels of roof shape and roof material used in this work are
obtained manually through the efforts of (untrained) volunteers. To our knowledge, each image is
only labelled once by one volunteer. Hence, possible differences among volunteers are not observed.
To improve label quality, images can be labelled by multiple persons, creating the opportunity to
compare the labelling efforts of the volunteers. Another approach would be the involvement of
experts or locals. Experts can label a part of the data set, which can serve as a benchmark for the
labelling quality of the volunteers. Even better would be to let locals assess individual buildings
in person. However, this would be very time consuming and expensive for larger areas. Future
implementations of CNN based classification models could benefit from semi-supervised learning
strategies, such as pseudo-labelling [Lee, 2013]. In this strategy the model is first trained on a
(small) set of labelled images. Subsequently, the model predicts the labels of a set of test images,
whereafter this will be added to the train data. This enlarged train set is then used to re-train
the model. Furthermore, one can use the trained model to assist the labelling process: the trained
model suggests labels of new imagery. This approach can especially be useful in data sets with
many distinct classes. Another interesting possibility is to use CNNs to enhance the quality of the
data. Dong et al. [2016] proposed so-called super-resolution CNNs which can learn the mapping
between low- and high-resolution imagery.

After finalising the data set, one can start building classification models. In practice, training
CNNs from scratch for image classification is unfeasible due to limited amount of data and com-
putational limitations. Hence, fine-tuning pre-trained networks on the target data is the better
alternative. There are many pre-trained networks available and past research have showed that the
relative performance differs per data set. Unfortunately, the performance of pre-trained networks
as feature extractor (no fine-tuning) in combination with a classifier, is not a reliable indicator
of the performance of the fine-tuned equivalent. Appendix G shows results of the pre-trained
networks used in this work as feature extractors, where a linear SVM is implemented as final
classifier. While using the pre-trained CNNs as feature extractor does not indicate its relative
performance among other networks, it is a good starting point in assessing the feasibility of the
classification problem.

One factor to consider is the required input size of the images, as one needs to transform
the imagery to a network-specific format. Downsizing images could result in a loss of relevant
information deteriorating the classification performance. In this study most images are smaller
than 200 × 200 (before re-sizing). Thus, not much information is lost due to re-sizing for most
imagery. However, for larger images this might affect the classification performance. Currently,
most pre-trained CNNs support input size of 224× 224 or 299× 299.

Another factor to consider is the support of the deep learning framework used. While ports
of networks across frameworks is (often) possible, porting introduces extra complexity in setting
up the models. In this work the Keras framework is used, which provides a high-level interface to
other (more) low-level deep learning frameworks. Its simplicity increases the usability, especially
for non-specialised people. However, for certain highly specialised computer vision scientists, Keras
could not provide the flexibility needed. A tutorial on how to use Keras on Google Colaboratory
is available on Github1. For new classification problems, we suggest to start with relatively simple
CNNs which have proven their effectiveness in other works (e.g. VGG-16) using similar training
parameters as used in this work. Next, if desirable, one can experiment with more advanced
training strategies.

Hardware is an important aspect when using (deep) CNN structures. Parallelism of computa-
tions in GPUs severely speeds up the training and prediction phase of CNNs. For example, training
the VGG-16 network on the roof material data set (approximately 800 images) takes around 18

1https://github.com/bartvandriel/keras_tutorial_image_classification

48

https://github.com/bartvandriel/keras_tutorial_image_classification

CHAPTER 7. PRACTICAL IMPLICATIONS

seconds per epoch when using the GPU. If only the CPU is enabled, the same epoch takes over
17 minutes, which is 58 times the GPU enabled processing time. Generally, two options can be
considered when choosing hardware and both alternatives have their own respective advantages
and disadvantages. First, one can set up their models using cloud computing services, which are
very flexible in scale and performance. However, cloud computing might get expensive when using
for extended periods of time, and requires the data to be transferred to external parties, which
might be undesirable with respect to data protection guidelines. The second alternative is set up
your own dedicated GPU server. This might be cheaper in the long run and gives full control with
respect to the data. On the other hand, setting up your own server has relatively high start-up
costs and is less flexible in terms of scale and performance.

As discussed in the previous chapter, optimising the models on accuracy could lead to skewed
predictions when the data set is imbalanced. Whether this skewness is problematic or not depends
on the problem domain and should be within the requirements of the end-user(s). Furthermore,
correcting the skewness leads to a decrease in overall accuracy. The easiest approach would be
passing weights to the loss function and optimising on loss (instead of accuracy). The weights
should be set equal to the inverse of the relative proportions of the classes in the data set. Further,
balancing the training and validation set by under- or over-sampling respectively the majority and
minority class(es) has similar effects to the weighted loss function alternative.

Before deploying the models, the classification results should be evaluated with respect to
the requirements of the end-user and adapted if needed. The evaluation metrics used in this
work are especially good for classification problems. Image segmentation and retrieval problems
require other evaluation metrics. Most important is that the requirements are constructed before
collecting the data, as the characteristics of the images define the classification possibilities. This
underlines the importance of a structured way of working. The CRISP-DM model captures most
of the steps discussed in this chapter and is a good guideline for future implementation.

49

Chapter 8

Conclusion

Finally, this chapter concludes this thesis. First, section 8.1 summarises the main conclusions.
Subsequently, section 8.2 describes the limitations, which should be taken into account interpreting
the conclusions. At last, section 8.3 recommends a number of promising new research directions.

8.1 Conclusions

Accurate, complete and up-to-date maps of areas are crucial for effective and efficient humanit-
arian aid. These maps are often unavailable for the most vulnerable areas. Currently, these maps
are obtained trough the work of many volunteers, who manually trace and classify buildings and
roads in OpenStreetMap using aerial imagery. NLRC 510 investigates the possibility of automat-
ing this process. This investigation takes two directions: tracing the buildings and classifying
characteristics of the buildings in aerial imagery. This work focuses on the latter, using aerial
imagery from Sint Maarten combined with detailed building information from OpenStreetMap.
The Sint Maarten data includes two roof type classes, roof shape and roof material. The labels
for roof shape is either flat or hipped, and for roof material either concrete, metal or roof tiles. In
order to validate the models, the UC-Merced data set is included for comparison.

Recent years, CNN based classification models have shown outstanding results on benchmark
data sets. Especially, the use of deep CNNs pre-trained on large image data bases (e.g. ImageNet)
has improved the usability of these kind of networks. Generally, fine-tuning these pre-trained
networks achieve the best results. In this work, two new approaches are proposed which further
exploit features generated by a fine-tuned CNN. The first approach is inspired by traditional
image classification pipe lines, which encodes image features before classification. First, features
are extracted from the last convolutional layer. Subsequently, the features are encoded using four
feature coding algorithms (i.e. BOW, VLAD, LLC and IFK). Finally, classification is conducted
by a linear SVM. The second approach investigates the use of RF with CNNs. Features are
extracted from the last fully connected layer of a fine-tuned CNN and classification is done by a
RF and SVM. Three pre-trained networks are fine-tuned on the aforementioned data sets. Overall,
VGG-16 tends to achieve the best classification performance and is chosen as feature extractor.

None of the feature coding approaches outperforms the base line network, the fine-tuned VGG-
16 network. Only VLAD, one of the relatively simple coding schemes, achieves equivalent results
on all three data sets. The alternative classifiers, using the features from the fully connected
layers, did not show consistent improvements compared to the VGG-16 model over all data sets.
On the roof material data set, RF showed a small improvement and SVM achieved a slightly
higher accuracy on the UC-Merced data set. The proposed approaches introduce new steps in

51

CHAPTER 8. CONCLUSION

the classification process, making the implementation of such models more complex and time
consuming compared to simply using a fine-tuned network. Moreover, the positive effects of data
augmentation is limited in the alternative approaches, since SVM and RF are (in essence) not able
to be trained on batches of data. Based on the results presented in this work, feature coding does
not improve classification performance of CNNs on the three data sets used. RF showed a small
improvement (< 1%) for the material data set and equivalent performance on the other two data
sets compared to the VGG-16 base line. To conclude, RF can improve classification accuracy of
the CNNs base classification models. However, the potential benefits (i.e. increased classification
performance) of experimenting with the proposed approaches do not outweigh the disadvantages
(i.e. more complex classification pipeline, extra computation time), as the potential improvement
is quite small.

With a mean accuracy and Kappa score of respectively 88% and 72%, the model classifying
the roof shapes (i.e. flat or hipped) is of a satisfactory quality. The classification of the roof
material (i.e concrete, metal and roof tiles) is more problematic, with a mean accuracy and Kappa
of respectively 69% and 41%. Due to class imbalance, the predictions of both models are skewed
to the majority class(es). As this work is purely a proof of concept it is unknown whether this
skewness is undesirable. Correcting this skewness will decrease overall accuracy. This trade-off
must be taken into account in future implementations. A potential reason for the unsatisfactory
classification of the roof material data set could be the quality of the building labels. As mentioned
in chapter 3, the buildings in the metal and roof tiles class look very much alike. Mislabelled
buildings could decrease the performance of the models and cause a misrepresentation of the
classification performance by the evaluation metrics. The classification models can be improved
by using more train data. However, the marginal effect of adding more train data decreases over
the amount of train data already used.

While the models are conducted on similar kind of setups, the results of other works have
not been replicated. Various reasons could contribute to this performance gap. First, the deep
learning framework used in this study achieves different results using, what is supposed to be, the
same model. Furthermore, the linear SVM implementation used in this work could differ from
other works. Moreover, training CNNs involves setting many hyper-parameters and most studies
only report a fraction of those. Hence, without additional information regarding these parameters
uncertainty remains with respect to the underlying reason of this performance gap.

By providing new insights in using CNN based classification approaches this work contributes to
the existing literature. Previous works experimented with alternative classifiers and feature coding,
but not as in this work. Furthermore, other works ignore the practical limitations to computational
resources. In practice, such expensive resources are not always available. Furthermore, this work
extends the little existing research to classification of building characteristics using CNNs.

The key factor in the success of classifying building characteristics is data. Potentially, CNNs
can outperform humans in image classification tasks, although this depends very much on the
quantity and quality of the data. Additionally, a high quality test set, which is a fair representation
of the area of interest, is important for evaluation purposes. What kind of buildings characteristics
can be classified is related to what is visible in the imagery. For example, if one aims to determine
wall types the images should be taken from a lower angle. Training a CNN requires many parameter
choices, which not only affect the performance but also the characteristics of the classification.
Therefore, the models should be set up in alignment with the requirements of the end-user(s).
A structured approach (such as CRISP-DM) could help to enhance the process of creating these
classification models.

52

CHAPTER 8. CONCLUSION

8.2 Limitations

The results presented in this work provide valuable insights in the application of CNNs for the
automatic classification of roof types in aerial imagery. However, several factors limit the extend
of the conclusions.

First, the conclusions made in this work are only based on the data sets used, i.e. the roof
shape, roof material and the UC-Merced data set. As can be seen in the results, the relative
performance of the models differ per data set. This indicates that the same experiments on other
data sets could lead to other conclusions.

Secondly, the uncertainty regarding the quality of the labels is another limitation. The absence
of additional ground truth information makes it impossible to determine the quality of the labels.

At last, limits to the computational resources constrained the design choices of the experiment.
For example, the amount of augmented data used to train the SVM and RF is bound due to
the available RAM in Google Colaboratory. Therefore, utilising more data augmentation could
improve the feature coding and RF approach. Additionally, several training hyper-parameters
are set such that the computational burden is reduced, e.g. freezing layers. More computational
resources would enable to chose between more hyper-parameters, and potentially, result to different
results. However, these kind of resources are expensive, which makes it less appealing to use such
classification pipelines in practice.

8.3 Future Research

This work provides a basis for future automatic classification of building characteristics. Poten-
tially, CNNs can outperform humans in image classification tasks. Hence, future research direction
are identified currently holding back the potential of CNNs in classification of building character-
istics: data quality and quantity.

The quality of the data influences what a classification models can classify. Higher resolution
imagery will reveal more refined details, which enables to classification of more distinct classes.
Obtaining high resolution imagery is difficult and buying it from external parties can be very
expensive. One interesting solution would be to enhance image resolution using CNNs as discussed
by Dong et al. [2016]. In theory, such models can transform low resolution satellite imagery into
higher resolution imagery.

Secondly, more research should be done to efficiently and effectively label large image data
sets. As the quality and quantity of the labels affect the classification performance and evaluation
reliability, this is an important direction for future implementation. One approach could be some
sort of model assisted labelling.

At last, capturing walls within remotely sensed imagery is still very difficult. Often, oblique
perspectives are missing due to the height the image is taken. Moreover, if walls are visible, only
a part of the wall or one side of the building is visible. More research should be done in how
to capture walls effectively and efficiently in remotely sensed imagery, whereafter can be used to
train CNN classification models.

53

Bibliography

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Soft-
ware available from tensorflow.org. 31

Rasha Alshehhi, Prashanth Reddy Marpu, Wei Lee Woon, and Mauro Dalla Mura. Simultaneous
extraction of roads and buildings in remote sensing imagery with convolutional neural networks.
ISPRS Journal of Photogrammetry and Remote Sensing, 130:139–149, 2017. 8

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In European
conference on computer vision, pages 404–417. Springer, 2006. 2

Mariana Belgiu and Lucian Drăguţ. Random forest in remote sensing: A review of applications
and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114:24–31, 2016.
15

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(Feb):281–305, 2012. 27

L Breiman, JH Friedman, RA Olshen, and CJ Stone. Classification and regression trees. monterey,
ca: Wadsworth. wadsworth statistics/probability series, 1984. 15

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 14

Jeremy Castagno and Ella Atkins. Roof shape classification from lidar and satellite image data
fusion using supervised learning. Sensors, 18(11):3960, 2018a. 2

Jeremy D Castagno and Ella M Atkins. Automatic classification of roof shapes for multicopter
emergency landing site selection. arXiv preprint arXiv:1802.06274, 2018b. 2

Marco Castelluccio, Giovanni Poggi, Carlo Sansone, and Luisa Verdoliva. Land use classification
in remote sensing images by convolutional neural networks. arXiv preprint arXiv:1508.00092,
2015. 7, 9, 10

Gong Cheng, Chengcheng Ma, Peicheng Zhou, Xiwen Yao, and Junwei Han. Scene classification
of high resolution remote sensing images using convolutional neural networks. In Geoscience
and Remote Sensing Symposium (IGARSS), 2016 IEEE International, pages 767–770. IEEE,
2016a. 7

54

https://www.tensorflow.org/

BIBLIOGRAPHY

Gong Cheng, Peicheng Zhou, and Junwei Han. Learning rotation-invariant convolutional neural
networks for object detection in vhr optical remote sensing images. IEEE Transactions on
Geoscience and Remote Sensing, 54(12):7405–7415, 2016b. 8

Gong Cheng, Zhenpeng Li, Xiwen Yao, Lei Guo, and Zhongliang Wei. Remote sensing image
scene classification using bag of convolutional features. IEEE Geoscience and Remote Sensing
Letters, 14(10):1735–1739, 2017. 8

François Chollet et al. Keras. https://keras.io, 2015. 31

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint,
pages 1610–02357, 2017. 26

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psychological meas-
urement, 20(1):37–46, 1960. 29

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995. 13, 14

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1–30, 2006. 29, 30

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. Ieee, 2009. 7

Christopher P Diehl and Gert Cauwenberghs. Svm incremental learning, adaptation and optimiza-
tion. In Neural Networks, 2003. Proceedings of the International Joint Conference on, volume 4,
pages 2685–2690. IEEE, 2003. 41

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):
295–307, 2016. 48, 53

ECIU. Heavy weather: Tracking the fingerprints of climate change, two years after the paris
summit. Technical report, Energy & Climate Intelligence Unit, December 2017. URL https:

//eciu.net/assets/Reports/ECIU_Climate_Attribution-report-Dec-2017.pdf. 1

Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. Statistical methods for rates and propor-
tions. John Wiley & Sons, 2013. 29, 30, 42, 43

Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the american statistical association, 32(200):675–701, 1937. 30

GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. Open
Source Geospatial Foundation, 2018. URL http://gdal.org. 31

HA Haenssle, C Fink, R Schneiderbauer, F Toberer, T Buhl, A Blum, A Kalloo, A Ben Hadj
Hassen, L Thomas, A Enk, et al. Man against machine: diagnostic performance of a deep
learning convolutional neural network for dermoscopic melanoma recognition in comparison to
58 dermatologists. Annals of Oncology, 29(8):1836–1842, 2018. 48

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015. 48

Fan Hu, Gui-Song Xia, Jingwen Hu, and Liangpei Zhang. Transferring deep convolutional neural
networks for the scene classification of high-resolution remote sensing imagery. Remote Sensing,
7(11):14680–14707, 2015. 8, 24, 26

55

https://keras.io
https://eciu.net/assets/Reports/ECIU_Climate_Attribution-report-Dec-2017.pdf
https://eciu.net/assets/Reports/ECIU_Climate_Attribution-report-Dec-2017.pdf
http://gdal.org

BIBLIOGRAPHY

Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local descriptors
into a compact image representation. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 3304–3311. IEEE, 2010. 8, 12

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001. URL http://www.scipy.org/. 31

Carolyn Kousky. Informing climate adaptation: A review of the economic costs of natural disasters.
Energy Economics, 46:576–592, 2014. 1

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012. 7

J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical data.
biometrics, pages 159–174, 1977. 29, 30, 42, 43

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. In Workshop on Challenges in Representation Learning, ICML, volume 3,
page 2, 2013. 48

Wei Li, Guodong Wu, Fan Zhang, and Qian Du. Hyperspectral image classification using deep
pixel-pair features. IEEE Transactions on Geoscience and Remote Sensing, 55(2):844–853, 2017.
8

Ying Li, Haokui Zhang, Xizhe Xue, Yenan Jiang, and Qiang Shen. Deep learning for remote sensing
image classification: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, page e1264, 2018. 2, 7

David G Lowe. Object recognition from local scale-invariant features. In Computer vision, 1999.
The proceedings of the seventh IEEE international conference on, volume 2, pages 1150–1157.
Ieee, 1999. 2

Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica: Biochemia medica,
22(3):276–282, 2012. 29, 30, 42, 43

Giorgos Mountrakis, Jungho Im, and Caesar Ogole. Support vector machines in remote sensing:
A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3):247–259, 2011. 14

MunichRE. A stormy year: Natural catastrophes 2017. Technical report, Munich RE, Decem-
ber 2018. URL https://www.munichre.com/content/dam/websites/munichre/mrwebsites/

topics-online/2018/topics-geo-2017/further-information/302-09092_en.pdf. 1

Symeon Nikitidis, Nikos Nikolaidis, and Ioannis Pitas. Incremental training of multiclass support
vector machines. In 2010 international conference on pattern recognition, pages 4267–4270.
IEEE, 2010. 41

Keiller Nogueira, Otávio AB Penatti, and Jefersson A dos Santos. Towards better exploiting
convolutional neural networks for remote sensing scene classification. Pattern Recognition, 61:
539–556, 2017. 8, 24, 27, 44, 46

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006. 31

T Partovi, F Fraundorfer, S Azimi, D Marmanis, and P Reinartz. Roof type selection based on
patch-based classification using deep learning for high resolution satellite imagery. International
Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42, 2017. 2,
47

56

http://www.scipy.org/
https://www.munichre.com/content/dam/websites/munichre/mrwebsites/topics-online/2018/topics-geo-2017/further-information/302-09092_en.pdf
https://www.munichre.com/content/dam/websites/munichre/mrwebsites/topics-online/2018/topics-geo-2017/further-information/302-09092_en.pdf

BIBLIOGRAPHY

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011. 31

Florent Perronnin and Christopher Dance. Fisher kernels on visual vocabularies for image cat-
egorization. In 2007 IEEE conference on computer vision and pattern recognition, pages 1–8.
IEEE, 2007. 12

Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-
scale image classification. In European conference on computer vision, pages 143–156. Springer,
2010. 8, 12

David MW Powers. What the f-measure doesn’t measure: Features, flaws, fallacies and fixes.
arXiv preprint arXiv:1503.06410, 2015. 29

QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Found-
ation, 2009. URL http://qgis.org. 31

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative
to sift or surf. In Computer Vision (ICCV), 2011 IEEE international conference on, pages
2564–2571. IEEE, 2011. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y. 24

Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof. On-line random
forests. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on, pages 1393–1400. IEEE, 2009. 41

Grant J Scott, Matthew R England, William A Starms, Richard A Marcum, and Curt H Davis.
Training deep convolutional neural networks for land–cover classification of high-resolution im-
agery. IEEE Geoscience and Remote Sensing Letters, 14(4):549–553, 2017. 8

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. 25

Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching in
videos. In null, page 1470. IEEE, 2003. 2, 8, 11

Viktor Slavkovikj, Steven Verstockt, Wesley De Neve, Sofie Van Hoecke, and Rik Van de Walle.
Hyperspectral image classification with convolutional neural networks. In Proceedings of the
23rd ACM international conference on Multimedia, pages 1159–1162. ACM, 2015. 8

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2818–2826, 2016. 25

Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong Gong. Locality-
constrained linear coding for image classification. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 3360–3367. IEEE, 2010. 8, 12

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin, 1(6):80–83,
1945. 30

Hao Wu and Saurabh Prasad. Convolutional recurrent neural networks forhyperspectral data
classification. Remote Sensing, 9(3):298, 2017. 8

57

http://qgis.org

BIBLIOGRAPHY

Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use classification.
In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic
information systems, pages 270–279. ACM, 2010. 20

Zhijing Yang, Faxian Cao, Jinchang Ren, and Wing-Kuen Ling. Convolutional neural network
extreme learning machine (cnn-elm) for effective classification of hyperspectral images. Journal
of Applied Remote Sensing, 2018. 8

Shiqi Yu, Sen Jia, and Chunyan Xu. Convolutional neural networks for hyperspectral image
classification. Neurocomputing, 219:88–98, 2017a. 8

Xingrui Yu, Xiaomin Wu, Chunbo Luo, and Peng Ren. Deep learning in remote sensing scene clas-
sification: a data augmentation enhanced convolutional neural network framework. GIScience
& Remote Sensing, 54(5):741–758, 2017b. 8

Yanfei Zhong, Feng Fei, and Liangpei Zhang. Large patch convolutional neural networks for the
scene classification of high spatial resolution imagery. Journal of Applied Remote Sensing, 10
(2):025006, 2016. 8

Weixun Zhou, Shawn Newsam, Congmin Li, and Zhenfeng Shao. Learning low dimensional con-
volutional neural networks for high-resolution remote sensing image retrieval. Remote Sensing,
9(5):489, 2017. 8, 24, 26

L. Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson. Generative adversarial networks for hy-
perspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 56(9):
5046–5063, Sept 2018. ISSN 0196-2892. doi: 10.1109/TGRS.2018.2805286. 8

58

Appendix A

Pre-trained networks available in
Keras

Rank Model Size
Top-1

Accuracy
Top-5

Accuracy
Parameters

1 NASNetLarge 343 MB 0.825 0.96 88949818
2 InceptionResNetV2 215 MB 0.803 0.953 55873736
3 Xception 88 MB 0.79 0.945 22910480
4 ResNeXt101 170 MB 0.787 0.943 44315560
5 ResNet152V2 232 MB 0.78 0.942 60380648
6 InceptionV3 92 MB 0.779 0.937 23851784
7 ResNeXt50 96 MB 0.777 0.938 25097128
8 DenseNet201 80 MB 0.773 0.936 20242984
9 ResNet101V2 171 MB 0.772 0.938 44675560
10 ResNet152 232 MB 0.766 0.931 60419944
11 ResNet101 171 MB 0.764 0.928 44707176
12 DenseNet169 57 MB 0.762 0.932 14307880
13 ResNet50V2 98 MB 0.76 0.93 25613800
14 DenseNet121 33 MB 0.75 0.923 8062504
15 ResNet50 98 MB 0.749 0.921 25636712
16 NASNetMobile 23 MB 0.744 0.919 5326716
17 VGG16 528 MB 0.713 0.901 138357544
18 MobileNetV2 14 MB 0.713 0.901 3538984
19 VGG19 549 MB 0.713 0.9 143667240
20 MobileNet 16 MB 0.704 0.895 4253864

Table A.1: Overview of pre-trained networks available through Keras

59

Appendix B

Weighted vs. Non-weighted
training

weighted non weighted Weighted >non weighted

Shape precision flat 0.89 ± 0.02 0.88 ± 0.01 TRUE
hipped 0.88 ± 0.04 0.89 ± 0.02 FALSE

recall flat 0.94 ± 0.02 0.95 ± 0.01 FALSE
hipped 0.78 ± 0.04 0.76 ± 0.03 TRUE

fscore flat 0.91 ± 0.01 0.91 ± 0.01 TRUE
hipped 0.83 ± 0.03 0.82 ± 0.02 TRUE

accuracy overall 0.89 ± 0.02 0.88 ± 0.01 TRUE

kappa overall 0.74 ± 0.04 0.73 ± 0.03 TRUE

Material precision concrete 0.69 ± 0.07 0.64 ± 0.05 TRUE
metal 0.71 ± 0.03 0.72 ± 0.04 FALSE

roof tiles 0.65 ± 0.09 0.66 ± 0.09 FALSE

recall concrete 0.51 ± 0.10 0.54 ± 0.12 FALSE
metal 0.85 ± 0.04 0.83 ± 0.05 TRUE

roof tiles 0.40 ± 0.09 0.39 ± 0.07 TRUE

fscore concrete 0.58 ± 0.05 0.58 ± 0.07 FALSE
metal 0.77 ± 0.02 0.77 ± 0.02 TRUE

roof tiles 0.49 ± 0.07 0.48 ± 0.06 TRUE

accuracy overall 0.69 ± 0.02 0.69 ± 0.02 TRUE

kappa overall 0.41 ± 0.05 0.41 ± 0.06 TRUE

Table B.1: Results of fine-tuned VGG-16 on the validation data set using a weighted vs. a non-
weighted loss function

60

Appendix C

Architectures of Convolutional
Neural Networks

C.1 VGG-16

Number Name Type Output shape Parameters Trainable

1 input 1 InputLayer (None, 224, 224, 3) 0 FALSE
2 block1 conv1 Conv2D (None, 224, 224, 64) 1792 FALSE
3 block1 conv2 Conv2D (None, 224, 224, 64) 36928 FALSE
4 block1 pool MaxPooling2D (None, 112, 112, 64) 0 FALSE
5 block2 conv1 Conv2D (None, 112, 112, 128) 73856 FALSE
6 block2 conv2 Conv2D (None, 112, 112, 128) 147584 FALSE
7 block2 pool MaxPooling2D (None, 56, 56, 128) 0 FALSE
8 block3 conv1 Conv2D (None, 56, 56, 256) 295168 FALSE
9 block3 conv2 Conv2D (None, 56, 56, 256) 590080 FALSE
10 block3 conv3 Conv2D (None, 56, 56, 256) 590080 FALSE
11 block3 pool MaxPooling2D (None, 28, 28, 256) 0 TRUE
12 block4 conv1 Conv2D (None, 28, 28, 512) 1180160 TRUE
13 block4 conv2 Conv2D (None, 28, 28, 512) 2359808 TRUE
14 block4 conv3 Conv2D (None, 28, 28, 512) 2359808 TRUE
15 block4 pool MaxPooling2D (None, 14, 14, 512) 0 TRUE
16 block5 conv1 Conv2D (None, 14, 14, 512) 2359808 TRUE
17 block5 conv2 Conv2D (None, 14, 14, 512) 2359808 TRUE
18 block5 conv3 Conv2D (None, 14, 14, 512) 2359808 TRUE
19 block5 pool MaxPooling2D (None, 7, 7, 512) 0 TRUE
20 flatten 1 Flatten (None, 25088) 0 TRUE
21 fc1 Dense (None, 4096) 102764544 TRUE
22 fc2 Dense (None, 4096) 16781312 TRUE
23 predictions Dense (None, 1000) 4097000 TRUE

Table C.1: Summary of the VGG-16 network

C.2 InceptionV3

61

APPENDIX C. ARCHITECTURES OF CONVOLUTIONAL NEURAL NETWORKS

Number Name Type Output shape Parameters Trainable

1 input 2 InputLayer (None, 299, 299, 3) 0 FALSE
2 conv2d 1 Conv2D (None, 149, 149, 32) 864 FALSE
3 batch normalization 1 BatchNormalization (None, 149, 149, 32) 96 FALSE
4 activation 1 Activation (None, 149, 149, 32) 0 FALSE
5 conv2d 2 Conv2D (None, 147, 147, 32) 9216 FALSE
6 batch normalization 2 BatchNormalization (None, 147, 147, 32) 96 FALSE
7 activation 2 Activation (None, 147, 147, 32) 0 FALSE
8 conv2d 3 Conv2D (None, 147, 147, 64) 18432 FALSE
9 batch normalization 3 BatchNormalization (None, 147, 147, 64) 192 FALSE
10 activation 3 Activation (None, 147, 147, 64) 0 FALSE
11 max pooling2d 1 MaxPooling2D (None, 73, 73, 64) 0 FALSE
12 conv2d 4 Conv2D (None, 73, 73, 80) 5120 FALSE
13 batch normalization 4 BatchNormalization (None, 73, 73, 80) 240 FALSE
14 activation 4 Activation (None, 73, 73, 80) 0 FALSE
15 conv2d 5 Conv2D (None, 71, 71, 192) 138240 FALSE
16 batch normalization 5 BatchNormalization (None, 71, 71, 192) 576 FALSE
17 activation 5 Activation (None, 71, 71, 192) 0 FALSE
18 max pooling2d 2 MaxPooling2D (None, 35, 35, 192) 0 FALSE
19 conv2d 9 Conv2D (None, 35, 35, 64) 12288 FALSE
20 batch normalization 9 BatchNormalization (None, 35, 35, 64) 192 FALSE
21 activation 9 Activation (None, 35, 35, 64) 0 FALSE
22 conv2d 7 Conv2D (None, 35, 35, 48) 9216 FALSE
23 conv2d 10 Conv2D (None, 35, 35, 96) 55296 FALSE
24 batch normalization 7 BatchNormalization (None, 35, 35, 48) 144 FALSE
25 batch normalization 10 BatchNormalization (None, 35, 35, 96) 288 FALSE
26 activation 7 Activation (None, 35, 35, 48) 0 FALSE
27 activation 10 Activation (None, 35, 35, 96) 0 FALSE
28 average pooling2d 1 AveragePooling2D (None, 35, 35, 192) 0 FALSE
29 conv2d 6 Conv2D (None, 35, 35, 64) 12288 FALSE
30 conv2d 8 Conv2D (None, 35, 35, 64) 76800 FALSE
31 conv2d 11 Conv2D (None, 35, 35, 96) 82944 FALSE
32 conv2d 12 Conv2D (None, 35, 35, 32) 6144 FALSE
33 batch normalization 6 BatchNormalization (None, 35, 35, 64) 192 FALSE
34 batch normalization 8 BatchNormalization (None, 35, 35, 64) 192 FALSE
35 batch normalization 11 BatchNormalization (None, 35, 35, 96) 288 FALSE
36 batch normalization 12 BatchNormalization (None, 35, 35, 32) 96 FALSE
37 activation 6 Activation (None, 35, 35, 64) 0 FALSE
38 activation 8 Activation (None, 35, 35, 64) 0 FALSE
39 activation 11 Activation (None, 35, 35, 96) 0 FALSE
40 activation 12 Activation (None, 35, 35, 32) 0 FALSE
41 mixed0 Concatenate (None, 35, 35, 256) 0 FALSE
42 conv2d 16 Conv2D (None, 35, 35, 64) 16384 FALSE
43 batch normalization 16 BatchNormalization (None, 35, 35, 64) 192 FALSE
44 activation 16 Activation (None, 35, 35, 64) 0 FALSE
45 conv2d 14 Conv2D (None, 35, 35, 48) 12288 FALSE
46 conv2d 17 Conv2D (None, 35, 35, 96) 55296 FALSE
47 batch normalization 14 BatchNormalization (None, 35, 35, 48) 144 FALSE
48 batch normalization 17 BatchNormalization (None, 35, 35, 96) 288 FALSE
49 activation 14 Activation (None, 35, 35, 48) 0 FALSE
50 activation 17 Activation (None, 35, 35, 96) 0 FALSE
51 average pooling2d 2 AveragePooling2D (None, 35, 35, 256) 0 FALSE
52 conv2d 13 Conv2D (None, 35, 35, 64) 16384 FALSE
53 conv2d 15 Conv2D (None, 35, 35, 64) 76800 FALSE
54 conv2d 18 Conv2D (None, 35, 35, 96) 82944 FALSE
55 conv2d 19 Conv2D (None, 35, 35, 64) 16384 FALSE
56 batch normalization 13 BatchNormalization (None, 35, 35, 64) 192 FALSE
57 batch normalization 15 BatchNormalization (None, 35, 35, 64) 192 FALSE
58 batch normalization 18 BatchNormalization (None, 35, 35, 96) 288 FALSE
59 batch normalization 19 BatchNormalization (None, 35, 35, 64) 192 FALSE
60 activation 13 Activation (None, 35, 35, 64) 0 FALSE
61 activation 15 Activation (None, 35, 35, 64) 0 FALSE
62 activation 18 Activation (None, 35, 35, 96) 0 FALSE
63 activation 19 Activation (None, 35, 35, 64) 0 FALSE
64 mixed1 Concatenate (None, 35, 35, 288) 0 FALSE
65 conv2d 23 Conv2D (None, 35, 35, 64) 18432 FALSE

62

APPENDIX C. ARCHITECTURES OF CONVOLUTIONAL NEURAL NETWORKS

66 batch normalization 23 BatchNormalization (None, 35, 35, 64) 192 FALSE
67 activation 23 Activation (None, 35, 35, 64) 0 FALSE
68 conv2d 21 Conv2D (None, 35, 35, 48) 13824 FALSE
69 conv2d 24 Conv2D (None, 35, 35, 96) 55296 FALSE
70 batch normalization 21 BatchNormalization (None, 35, 35, 48) 144 FALSE
71 batch normalization 24 BatchNormalization (None, 35, 35, 96) 288 FALSE
72 activation 21 Activation (None, 35, 35, 48) 0 FALSE
73 activation 24 Activation (None, 35, 35, 96) 0 FALSE
74 average pooling2d 3 AveragePooling2D (None, 35, 35, 288) 0 FALSE
75 conv2d 20 Conv2D (None, 35, 35, 64) 18432 FALSE
76 conv2d 22 Conv2D (None, 35, 35, 64) 76800 FALSE
77 conv2d 25 Conv2D (None, 35, 35, 96) 82944 FALSE
78 conv2d 26 Conv2D (None, 35, 35, 64) 18432 FALSE
79 batch normalization 20 BatchNormalization (None, 35, 35, 64) 192 FALSE
80 batch normalization 22 BatchNormalization (None, 35, 35, 64) 192 FALSE
81 batch normalization 25 BatchNormalization (None, 35, 35, 96) 288 FALSE
82 batch normalization 26 BatchNormalization (None, 35, 35, 64) 192 FALSE
83 activation 20 Activation (None, 35, 35, 64) 0 FALSE
84 activation 22 Activation (None, 35, 35, 64) 0 FALSE
85 activation 25 Activation (None, 35, 35, 96) 0 FALSE
86 activation 26 Activation (None, 35, 35, 64) 0 FALSE
87 mixed2 Concatenate (None, 35, 35, 288) 0 FALSE
88 conv2d 28 Conv2D (None, 35, 35, 64) 18432 FALSE
89 batch normalization 28 BatchNormalization (None, 35, 35, 64) 192 FALSE
90 activation 28 Activation (None, 35, 35, 64) 0 FALSE
91 conv2d 29 Conv2D (None, 35, 35, 96) 55296 FALSE
92 batch normalization 29 BatchNormalization (None, 35, 35, 96) 288 FALSE
93 activation 29 Activation (None, 35, 35, 96) 0 FALSE
94 conv2d 27 Conv2D (None, 17, 17, 384) 995328 FALSE
95 conv2d 30 Conv2D (None, 17, 17, 96) 82944 FALSE
96 batch normalization 27 BatchNormalization (None, 17, 17, 384) 1152 FALSE
97 batch normalization 30 BatchNormalization (None, 17, 17, 96) 288 FALSE
98 activation 27 Activation (None, 17, 17, 384) 0 FALSE
99 activation 30 Activation (None, 17, 17, 96) 0 FALSE
100 max pooling2d 3 MaxPooling2D (None, 17, 17, 288) 0 FALSE
101 mixed3 Concatenate (None, 17, 17, 768) 0 FALSE
102 conv2d 35 Conv2D (None, 17, 17, 128) 98304 FALSE
103 batch normalization 35 BatchNormalization (None, 17, 17, 128) 384 FALSE
104 activation 35 Activation (None, 17, 17, 128) 0 FALSE
105 conv2d 36 Conv2D (None, 17, 17, 128) 114688 FALSE
106 batch normalization 36 BatchNormalization (None, 17, 17, 128) 384 FALSE
107 activation 36 Activation (None, 17, 17, 128) 0 FALSE
108 conv2d 32 Conv2D (None, 17, 17, 128) 98304 FALSE
109 conv2d 37 Conv2D (None, 17, 17, 128) 114688 FALSE
110 batch normalization 32 BatchNormalization (None, 17, 17, 128) 384 FALSE
111 batch normalization 37 BatchNormalization (None, 17, 17, 128) 384 FALSE
112 activation 32 Activation (None, 17, 17, 128) 0 FALSE
113 activation 37 Activation (None, 17, 17, 128) 0 FALSE
114 conv2d 33 Conv2D (None, 17, 17, 128) 114688 FALSE
115 conv2d 38 Conv2D (None, 17, 17, 128) 114688 FALSE
116 batch normalization 33 BatchNormalization (None, 17, 17, 128) 384 FALSE
117 batch normalization 38 BatchNormalization (None, 17, 17, 128) 384 FALSE
118 activation 33 Activation (None, 17, 17, 128) 0 FALSE
119 activation 38 Activation (None, 17, 17, 128) 0 FALSE
120 average pooling2d 4 AveragePooling2D (None, 17, 17, 768) 0 FALSE
121 conv2d 31 Conv2D (None, 17, 17, 192) 147456 FALSE
122 conv2d 34 Conv2D (None, 17, 17, 192) 172032 FALSE
123 conv2d 39 Conv2D (None, 17, 17, 192) 172032 FALSE
124 conv2d 40 Conv2D (None, 17, 17, 192) 147456 FALSE
125 batch normalization 31 BatchNormalization (None, 17, 17, 192) 576 FALSE
126 batch normalization 34 BatchNormalization (None, 17, 17, 192) 576 FALSE
127 batch normalization 39 BatchNormalization (None, 17, 17, 192) 576 FALSE
128 batch normalization 40 BatchNormalization (None, 17, 17, 192) 576 FALSE
129 activation 31 Activation (None, 17, 17, 192) 0 FALSE
130 activation 34 Activation (None, 17, 17, 192) 0 FALSE
131 activation 39 Activation (None, 17, 17, 192) 0 FALSE

63

APPENDIX C. ARCHITECTURES OF CONVOLUTIONAL NEURAL NETWORKS

132 activation 40 Activation (None, 17, 17, 192) 0 FALSE
133 mixed4 Concatenate (None, 17, 17, 768) 0 FALSE
134 conv2d 45 Conv2D (None, 17, 17, 160) 122880 FALSE
135 batch normalization 45 BatchNormalization (None, 17, 17, 160) 480 FALSE
136 activation 45 Activation (None, 17, 17, 160) 0 FALSE
137 conv2d 46 Conv2D (None, 17, 17, 160) 179200 FALSE
138 batch normalization 46 BatchNormalization (None, 17, 17, 160) 480 FALSE
139 activation 46 Activation (None, 17, 17, 160) 0 FALSE
140 conv2d 42 Conv2D (None, 17, 17, 160) 122880 FALSE
141 conv2d 47 Conv2D (None, 17, 17, 160) 179200 FALSE
142 batch normalization 42 BatchNormalization (None, 17, 17, 160) 480 FALSE
143 batch normalization 47 BatchNormalization (None, 17, 17, 160) 480 FALSE
144 activation 42 Activation (None, 17, 17, 160) 0 FALSE
145 activation 47 Activation (None, 17, 17, 160) 0 FALSE
146 conv2d 43 Conv2D (None, 17, 17, 160) 179200 FALSE
147 conv2d 48 Conv2D (None, 17, 17, 160) 179200 FALSE
148 batch normalization 43 BatchNormalization (None, 17, 17, 160) 480 FALSE
149 batch normalization 48 BatchNormalization (None, 17, 17, 160) 480 FALSE
150 activation 43 Activation (None, 17, 17, 160) 0 FALSE
151 activation 48 Activation (None, 17, 17, 160) 0 FALSE
152 average pooling2d 5 AveragePooling2D (None, 17, 17, 768) 0 FALSE
153 conv2d 41 Conv2D (None, 17, 17, 192) 147456 FALSE
154 conv2d 44 Conv2D (None, 17, 17, 192) 215040 FALSE
155 conv2d 49 Conv2D (None, 17, 17, 192) 215040 FALSE
156 conv2d 50 Conv2D (None, 17, 17, 192) 147456 FALSE
157 batch normalization 41 BatchNormalization (None, 17, 17, 192) 576 FALSE
158 batch normalization 44 BatchNormalization (None, 17, 17, 192) 576 FALSE
159 batch normalization 49 BatchNormalization (None, 17, 17, 192) 576 FALSE
160 batch normalization 50 BatchNormalization (None, 17, 17, 192) 576 FALSE
161 activation 41 Activation (None, 17, 17, 192) 0 FALSE
162 activation 44 Activation (None, 17, 17, 192) 0 FALSE
163 activation 49 Activation (None, 17, 17, 192) 0 FALSE
164 activation 50 Activation (None, 17, 17, 192) 0 FALSE
165 mixed5 Concatenate (None, 17, 17, 768) 0 FALSE
166 conv2d 55 Conv2D (None, 17, 17, 160) 122880 FALSE
167 batch normalization 55 BatchNormalization (None, 17, 17, 160) 480 FALSE
168 activation 55 Activation (None, 17, 17, 160) 0 FALSE
169 conv2d 56 Conv2D (None, 17, 17, 160) 179200 FALSE
170 batch normalization 56 BatchNormalization (None, 17, 17, 160) 480 FALSE
171 activation 56 Activation (None, 17, 17, 160) 0 FALSE
172 conv2d 52 Conv2D (None, 17, 17, 160) 122880 FALSE
173 conv2d 57 Conv2D (None, 17, 17, 160) 179200 FALSE
174 batch normalization 52 BatchNormalization (None, 17, 17, 160) 480 FALSE
175 batch normalization 57 BatchNormalization (None, 17, 17, 160) 480 FALSE
176 activation 52 Activation (None, 17, 17, 160) 0 FALSE
177 activation 57 Activation (None, 17, 17, 160) 0 FALSE
178 conv2d 53 Conv2D (None, 17, 17, 160) 179200 FALSE
179 conv2d 58 Conv2D (None, 17, 17, 160) 179200 FALSE
180 batch normalization 53 BatchNormalization (None, 17, 17, 160) 480 FALSE
181 batch normalization 58 BatchNormalization (None, 17, 17, 160) 480 FALSE
182 activation 53 Activation (None, 17, 17, 160) 0 FALSE
183 activation 58 Activation (None, 17, 17, 160) 0 FALSE
184 average pooling2d 6 AveragePooling2D (None, 17, 17, 768) 0 FALSE
185 conv2d 51 Conv2D (None, 17, 17, 192) 147456 FALSE
186 conv2d 54 Conv2D (None, 17, 17, 192) 215040 FALSE
187 conv2d 59 Conv2D (None, 17, 17, 192) 215040 FALSE
188 conv2d 60 Conv2D (None, 17, 17, 192) 147456 FALSE
189 batch normalization 51 BatchNormalization (None, 17, 17, 192) 576 FALSE
190 batch normalization 54 BatchNormalization (None, 17, 17, 192) 576 FALSE
191 batch normalization 59 BatchNormalization (None, 17, 17, 192) 576 FALSE
192 batch normalization 60 BatchNormalization (None, 17, 17, 192) 576 FALSE
193 activation 51 Activation (None, 17, 17, 192) 0 FALSE
194 activation 54 Activation (None, 17, 17, 192) 0 FALSE
195 activation 59 Activation (None, 17, 17, 192) 0 FALSE
196 activation 60 Activation (None, 17, 17, 192) 0 FALSE
197 mixed6 Concatenate (None, 17, 17, 768) 0 FALSE

64

APPENDIX C. ARCHITECTURES OF CONVOLUTIONAL NEURAL NETWORKS

198 conv2d 65 Conv2D (None, 17, 17, 192) 147456 FALSE
199 batch normalization 65 BatchNormalization (None, 17, 17, 192) 576 FALSE
200 activation 65 Activation (None, 17, 17, 192) 0 FALSE
201 conv2d 66 Conv2D (None, 17, 17, 192) 258048 FALSE
202 batch normalization 66 BatchNormalization (None, 17, 17, 192) 576 FALSE
203 activation 66 Activation (None, 17, 17, 192) 0 FALSE
204 conv2d 62 Conv2D (None, 17, 17, 192) 147456 FALSE
205 conv2d 67 Conv2D (None, 17, 17, 192) 258048 FALSE
206 batch normalization 62 BatchNormalization (None, 17, 17, 192) 576 FALSE
207 batch normalization 67 BatchNormalization (None, 17, 17, 192) 576 FALSE
208 activation 62 Activation (None, 17, 17, 192) 0 FALSE
209 activation 67 Activation (None, 17, 17, 192) 0 FALSE
210 conv2d 63 Conv2D (None, 17, 17, 192) 258048 FALSE
211 conv2d 68 Conv2D (None, 17, 17, 192) 258048 FALSE
212 batch normalization 63 BatchNormalization (None, 17, 17, 192) 576 FALSE
213 batch normalization 68 BatchNormalization (None, 17, 17, 192) 576 FALSE
214 activation 63 Activation (None, 17, 17, 192) 0 FALSE
215 activation 68 Activation (None, 17, 17, 192) 0 FALSE
216 average pooling2d 7 AveragePooling2D (None, 17, 17, 768) 0 FALSE
217 conv2d 61 Conv2D (None, 17, 17, 192) 147456 FALSE
218 conv2d 64 Conv2D (None, 17, 17, 192) 258048 FALSE
219 conv2d 69 Conv2D (None, 17, 17, 192) 258048 FALSE
220 conv2d 70 Conv2D (None, 17, 17, 192) 147456 FALSE
221 batch normalization 61 BatchNormalization (None, 17, 17, 192) 576 FALSE
222 batch normalization 64 BatchNormalization (None, 17, 17, 192) 576 FALSE
223 batch normalization 69 BatchNormalization (None, 17, 17, 192) 576 FALSE
224 batch normalization 70 BatchNormalization (None, 17, 17, 192) 576 FALSE
225 activation 61 Activation (None, 17, 17, 192) 0 FALSE
226 activation 64 Activation (None, 17, 17, 192) 0 FALSE
227 activation 69 Activation (None, 17, 17, 192) 0 FALSE
228 activation 70 Activation (None, 17, 17, 192) 0 FALSE
229 mixed7 Concatenate (None, 17, 17, 768) 0 FALSE
230 conv2d 73 Conv2D (None, 17, 17, 192) 147456 FALSE
231 batch normalization 73 BatchNormalization (None, 17, 17, 192) 576 FALSE
232 activation 73 Activation (None, 17, 17, 192) 0 FALSE
233 conv2d 74 Conv2D (None, 17, 17, 192) 258048 FALSE
234 batch normalization 74 BatchNormalization (None, 17, 17, 192) 576 FALSE
235 activation 74 Activation (None, 17, 17, 192) 0 FALSE
236 conv2d 71 Conv2D (None, 17, 17, 192) 147456 FALSE
237 conv2d 75 Conv2D (None, 17, 17, 192) 258048 FALSE
238 batch normalization 71 BatchNormalization (None, 17, 17, 192) 576 FALSE
239 batch normalization 75 BatchNormalization (None, 17, 17, 192) 576 FALSE
240 activation 71 Activation (None, 17, 17, 192) 0 FALSE
241 activation 75 Activation (None, 17, 17, 192) 0 FALSE
242 conv2d 72 Conv2D (None, 8, 8, 320) 552960 FALSE
243 conv2d 76 Conv2D (None, 8, 8, 192) 331776 FALSE
244 batch normalization 72 BatchNormalization (None, 8, 8, 320) 960 FALSE
245 batch normalization 76 BatchNormalization (None, 8, 8, 192) 576 FALSE
246 activation 72 Activation (None, 8, 8, 320) 0 FALSE
247 activation 76 Activation (None, 8, 8, 192) 0 FALSE
248 max pooling2d 4 MaxPooling2D (None, 8, 8, 768) 0 FALSE
249 mixed8 Concatenate (None, 8, 8, 1280) 0 FALSE
250 conv2d 81 Conv2D (None, 8, 8, 448) 573440 TRUE
251 batch normalization 81 BatchNormalization (None, 8, 8, 448) 1344 TRUE
252 activation 81 Activation (None, 8, 8, 448) 0 TRUE
253 conv2d 78 Conv2D (None, 8, 8, 384) 491520 TRUE
254 conv2d 82 Conv2D (None, 8, 8, 384) 1548288 TRUE
255 batch normalization 78 BatchNormalization (None, 8, 8, 384) 1152 TRUE
256 batch normalization 82 BatchNormalization (None, 8, 8, 384) 1152 TRUE
257 activation 78 Activation (None, 8, 8, 384) 0 TRUE
258 activation 82 Activation (None, 8, 8, 384) 0 TRUE
259 conv2d 79 Conv2D (None, 8, 8, 384) 442368 TRUE
260 conv2d 80 Conv2D (None, 8, 8, 384) 442368 TRUE
261 conv2d 83 Conv2D (None, 8, 8, 384) 442368 TRUE
262 conv2d 84 Conv2D (None, 8, 8, 384) 442368 TRUE
263 average pooling2d 8 AveragePooling2D (None, 8, 8, 1280) 0 TRUE

65

APPENDIX C. ARCHITECTURES OF CONVOLUTIONAL NEURAL NETWORKS

264 conv2d 77 Conv2D (None, 8, 8, 320) 409600 TRUE
265 batch normalization 79 BatchNormalization (None, 8, 8, 384) 1152 TRUE
266 batch normalization 80 BatchNormalization (None, 8, 8, 384) 1152 TRUE
267 batch normalization 83 BatchNormalization (None, 8, 8, 384) 1152 TRUE
268 batch normalization 84 BatchNormalization (None, 8, 8, 384) 1152 TRUE
269 conv2d 85 Conv2D (None, 8, 8, 192) 245760 TRUE
270 batch normalization 77 BatchNormalization (None, 8, 8, 320) 960 TRUE
271 activation 79 Activation (None, 8, 8, 384) 0 TRUE
272 activation 80 Activation (None, 8, 8, 384) 0 TRUE
273 activation 83 Activation (None, 8, 8, 384) 0 TRUE
274 activation 84 Activation (None, 8, 8, 384) 0 TRUE
275 batch normalization 85 BatchNormalization (None, 8, 8, 192) 576 TRUE
276 activation 77 Activation (None, 8, 8, 320) 0 TRUE
277 mixed9 0 Concatenate (None, 8, 8, 768) 0 TRUE
278 concatenate 1 Concatenate (None, 8, 8, 768) 0 TRUE
279 activation 85 Activation (None, 8, 8, 192) 0 TRUE
280 mixed9 Concatenate (None, 8, 8, 2048) 0 TRUE
281 conv2d 90 Conv2D (None, 8, 8, 448) 917504 TRUE
282 batch normalization 90 BatchNormalization (None, 8, 8, 448) 1344 TRUE
283 activation 90 Activation (None, 8, 8, 448) 0 TRUE
284 conv2d 87 Conv2D (None, 8, 8, 384) 786432 TRUE
285 conv2d 91 Conv2D (None, 8, 8, 384) 1548288 TRUE
286 batch normalization 87 BatchNormalization (None, 8, 8, 384) 1152 TRUE
287 batch normalization 91 BatchNormalization (None, 8, 8, 384) 1152 TRUE
288 activation 87 Activation (None, 8, 8, 384) 0 TRUE
289 activation 91 Activation (None, 8, 8, 384) 0 TRUE
290 conv2d 88 Conv2D (None, 8, 8, 384) 442368 TRUE
291 conv2d 89 Conv2D (None, 8, 8, 384) 442368 TRUE
292 conv2d 92 Conv2D (None, 8, 8, 384) 442368 TRUE
293 conv2d 93 Conv2D (None, 8, 8, 384) 442368 TRUE
294 average pooling2d 9 AveragePooling2D (None, 8, 8, 2048) 0 TRUE
295 conv2d 86 Conv2D (None, 8, 8, 320) 655360 TRUE
296 batch normalization 88 BatchNormalization (None, 8, 8, 384) 1152 TRUE
297 batch normalization 89 BatchNormalization (None, 8, 8, 384) 1152 TRUE
298 batch normalization 92 BatchNormalization (None, 8, 8, 384) 1152 TRUE
299 batch normalization 93 BatchNormalization (None, 8, 8, 384) 1152 TRUE
300 conv2d 94 Conv2D (None, 8, 8, 192) 393216 TRUE
301 batch normalization 86 BatchNormalization (None, 8, 8, 320) 960 TRUE
302 activation 88 Activation (None, 8, 8, 384) 0 TRUE
303 activation 89 Activation (None, 8, 8, 384) 0 TRUE
304 activation 92 Activation (None, 8, 8, 384) 0 TRUE
305 activation 93 Activation (None, 8, 8, 384) 0 TRUE
306 batch normalization 94 BatchNormalization (None, 8, 8, 192) 576 TRUE
307 activation 86 Activation (None, 8, 8, 320) 0 TRUE
308 mixed9 1 Concatenate (None, 8, 8, 768) 0 TRUE
309 concatenate 2 Concatenate (None, 8, 8, 768) 0 TRUE
310 activation 94 Activation (None, 8, 8, 192) 0 TRUE
311 mixed10 Concatenate (None, 8, 8, 2048) 0 TRUE
312 global average pooling2d 1 GlobalAveragePooling2D (None, 2048) 0 TRUE
313 dense 1 Dense (None, 1024) 2098176 TRUE
314 dense 2 Dense (None, 1000) 1025000 TRUE

Table C.2: Summary of the InceptionV3 network

C.3 Xception

Number Name Type Output shape Parameters Trainable

1 input 3 InputLayer (None, 299, 299, 3) 0 FALSE
2 block1 conv1 Conv2D (None, 149, 149, 32) 864 FALSE
3 block1 conv1 bn BatchNormalization (None, 149, 149, 32) 128 FALSE
4 block1 conv1 act Activation (None, 149, 149, 32) 0 FALSE
5 block1 conv2 Conv2D (None, 147, 147, 64) 18432 FALSE

66

APPENDIX C. ARCHITECTURES OF CONVOLUTIONAL NEURAL NETWORKS

6 block1 conv2 bn BatchNormalization (None, 147, 147, 64) 256 FALSE
7 block1 conv2 act Activation (None, 147, 147, 64) 0 FALSE
8 block2 sepconv1 SeparableConv2D (None, 147, 147, 128) 8768 FALSE
9 block2 sepconv1 bn BatchNormalization (None, 147, 147, 128) 512 FALSE
10 block2 sepconv2 act Activation (None, 147, 147, 128) 0 FALSE
11 block2 sepconv2 SeparableConv2D (None, 147, 147, 128) 17536 FALSE
12 block2 sepconv2 bn BatchNormalization (None, 147, 147, 128) 512 FALSE
13 conv2d 95 Conv2D (None, 74, 74, 128) 8192 FALSE
14 block2 pool MaxPooling2D (None, 74, 74, 128) 0 FALSE
15 batch normalization 95 BatchNormalization (None, 74, 74, 128) 512 FALSE
16 add 1 Add (None, 74, 74, 128) 0 FALSE
17 block3 sepconv1 act Activation (None, 74, 74, 128) 0 FALSE
18 block3 sepconv1 SeparableConv2D (None, 74, 74, 256) 33920 FALSE
19 block3 sepconv1 bn BatchNormalization (None, 74, 74, 256) 1024 FALSE
20 block3 sepconv2 act Activation (None, 74, 74, 256) 0 FALSE
21 block3 sepconv2 SeparableConv2D (None, 74, 74, 256) 67840 FALSE
22 block3 sepconv2 bn BatchNormalization (None, 74, 74, 256) 1024 FALSE
23 conv2d 96 Conv2D (None, 37, 37, 256) 32768 FALSE
24 block3 pool MaxPooling2D (None, 37, 37, 256) 0 FALSE
25 batch normalization 96 BatchNormalization (None, 37, 37, 256) 1024 FALSE
26 add 2 Add (None, 37, 37, 256) 0 FALSE
27 block4 sepconv1 act Activation (None, 37, 37, 256) 0 FALSE
28 block4 sepconv1 SeparableConv2D (None, 37, 37, 728) 188672 FALSE
29 block4 sepconv1 bn BatchNormalization (None, 37, 37, 728) 2912 FALSE
30 block4 sepconv2 act Activation (None, 37, 37, 728) 0 FALSE
31 block4 sepconv2 SeparableConv2D (None, 37, 37, 728) 536536 FALSE
32 block4 sepconv2 bn BatchNormalization (None, 37, 37, 728) 2912 FALSE
33 conv2d 97 Conv2D (None, 19, 19, 728) 186368 FALSE
34 block4 pool MaxPooling2D (None, 19, 19, 728) 0 FALSE
35 batch normalization 97 BatchNormalization (None, 19, 19, 728) 2912 FALSE
36 add 3 Add (None, 19, 19, 728) 0 FALSE
37 block5 sepconv1 act Activation (None, 19, 19, 728) 0 FALSE
38 block5 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
39 block5 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
40 block5 sepconv2 act Activation (None, 19, 19, 728) 0 FALSE
41 block5 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
42 block5 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
43 block5 sepconv3 act Activation (None, 19, 19, 728) 0 FALSE
44 block5 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
45 block5 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
46 add 4 Add (None, 19, 19, 728) 0 FALSE
47 block6 sepconv1 act Activation (None, 19, 19, 728) 0 FALSE
48 block6 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
49 block6 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
50 block6 sepconv2 act Activation (None, 19, 19, 728) 0 FALSE
51 block6 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
52 block6 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
53 block6 sepconv3 act Activation (None, 19, 19, 728) 0 FALSE
54 block6 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
55 block6 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
56 add 5 Add (None, 19, 19, 728) 0 FALSE
57 block7 sepconv1 act Activation (None, 19, 19, 728) 0 FALSE
58 block7 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
59 block7 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
60 block7 sepconv2 act Activation (None, 19, 19, 728) 0 FALSE
61 block7 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
62 block7 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
63 block7 sepconv3 act Activation (None, 19, 19, 728) 0 FALSE
64 block7 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
65 block7 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
66 add 6 Add (None, 19, 19, 728) 0 FALSE
67 block8 sepconv1 act Activation (None, 19, 19, 728) 0 FALSE
68 block8 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
69 block8 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
70 block8 sepconv2 act Activation (None, 19, 19, 728) 0 FALSE
71 block8 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 FALSE

67

APPENDIX C. ARCHITECTURES OF CONVOLUTIONAL NEURAL NETWORKS

72 block8 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
73 block8 sepconv3 act Activation (None, 19, 19, 728) 0 FALSE
74 block8 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
75 block8 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
76 add 7 Add (None, 19, 19, 728) 0 FALSE
77 block9 sepconv1 act Activation (None, 19, 19, 728) 0 FALSE
78 block9 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
79 block9 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
80 block9 sepconv2 act Activation (None, 19, 19, 728) 0 FALSE
81 block9 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
82 block9 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
83 block9 sepconv3 act Activation (None, 19, 19, 728) 0 FALSE
84 block9 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
85 block9 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
86 add 8 Add (None, 19, 19, 728) 0 FALSE
87 block10 sepconv1 act Activation (None, 19, 19, 728) 0 FALSE
88 block10 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
89 block10 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
90 block10 sepconv2 act Activation (None, 19, 19, 728) 0 FALSE
91 block10 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
92 block10 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
93 block10 sepconv3 act Activation (None, 19, 19, 728) 0 FALSE
94 block10 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 FALSE
95 block10 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 FALSE
96 add 9 Add (None, 19, 19, 728) 0 TRUE
97 block11 sepconv1 act Activation (None, 19, 19, 728) 0 TRUE
98 block11 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 TRUE
99 block11 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 TRUE
100 block11 sepconv2 act Activation (None, 19, 19, 728) 0 TRUE
101 block11 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 TRUE
102 block11 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 TRUE
103 block11 sepconv3 act Activation (None, 19, 19, 728) 0 TRUE
104 block11 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 TRUE
105 block11 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 TRUE
106 add 10 Add (None, 19, 19, 728) 0 TRUE
107 block12 sepconv1 act Activation (None, 19, 19, 728) 0 TRUE
108 block12 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 TRUE
109 block12 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 TRUE
110 block12 sepconv2 act Activation (None, 19, 19, 728) 0 TRUE
111 block12 sepconv2 SeparableConv2D (None, 19, 19, 728) 536536 TRUE
112 block12 sepconv2 bn BatchNormalization (None, 19, 19, 728) 2912 TRUE
113 block12 sepconv3 act Activation (None, 19, 19, 728) 0 TRUE
114 block12 sepconv3 SeparableConv2D (None, 19, 19, 728) 536536 TRUE
115 block12 sepconv3 bn BatchNormalization (None, 19, 19, 728) 2912 TRUE
116 add 11 Add (None, 19, 19, 728) 0 TRUE
117 block13 sepconv1 act Activation (None, 19, 19, 728) 0 TRUE
118 block13 sepconv1 SeparableConv2D (None, 19, 19, 728) 536536 TRUE
119 block13 sepconv1 bn BatchNormalization (None, 19, 19, 728) 2912 TRUE
120 block13 sepconv2 act Activation (None, 19, 19, 728) 0 TRUE
121 block13 sepconv2 SeparableConv2D (None, 19, 19, 1024) 752024 TRUE
122 block13 sepconv2 bn BatchNormalization (None, 19, 19, 1024) 4096 TRUE
123 conv2d 98 Conv2D (None, 10, 10, 1024) 745472 TRUE
124 block13 pool MaxPooling2D (None, 10, 10, 1024) 0 TRUE
125 batch normalization 98 BatchNormalization (None, 10, 10, 1024) 4096 TRUE
126 add 12 Add (None, 10, 10, 1024) 0 TRUE
127 block14 sepconv1 SeparableConv2D (None, 10, 10, 1536) 1582080 TRUE
128 block14 sepconv1 bn BatchNormalization (None, 10, 10, 1536) 6144 TRUE
129 block14 sepconv1 act Activation (None, 10, 10, 1536) 0 TRUE
130 block14 sepconv2 SeparableConv2D (None, 10, 10, 2048) 3159552 TRUE
131 block14 sepconv2 bn BatchNormalization (None, 10, 10, 2048) 8192 TRUE
132 block14 sepconv2 act Activation (None, 10, 10, 2048) 0 TRUE
133 global average pooling2d 2 GlobalAveragePooling2D (None, 2048) 0 TRUE
134 dense 3 Dense (None, 1000) 2049000 TRUE

Table C.3: Summary of the Xception network

68

Appendix D

Complete results per data set

D.1 Roof shape

VGG Inception Xception

precision flat 0.88 ± 0.01 0.78 ± 0.03 0.83 ± 0.03
hipped 0.87 ± 0.02 0.69 ± 0.06 0.87 ± 0.04

recall flat 0.94 ± 0.01 0.87 ± 0.04 0.95 ± 0.02
hipped 0.76 ± 0.02 0.55 ± 0.09 0.65 ± 0.08

fscore flat 0.91 ± 0.01 0.82 ± 0.02 0.89 ± 0.01
hipped 0.81 ± 0.01 0.61 ± 0.06 0.74 ± 0.05

accuracy overall 0.88 ± 0.01 0.75 ± 0.03 0.84 ± 0.02

kappa overall 0.72 ± 0.02 0.43 ± 0.07 0.63 ± 0.06

None BOW VLAD

precision flat 0.87 ± 0.01 0.86 ± 0.01 0.88 ± 0.01
hipped 0.84 ± 0.01 0.83 ± 0.02 0.87 ± 0.02

recall flat 0.92 ± 0.01 0.92 ± 0.01 0.94 ± 0.01
hipped 0.75 ± 0.02 0.74 ± 0.02 0.76 ± 0.02

fscore flat 0.90 ± 0.01 0.89 ± 0.01 0.91 ± 0.00
hipped 0.79 ± 0.02 0.78 ± 0.02 0.81 ± 0.01

accuracy overall 0.86 ± 0.01 0.85 ± 0.01 0.87 ± 0.00

kappa overall 0.69 ± 0.02 0.67 ± 0.02 0.72 ± 0.01

LLC IFK

precision flat 0.86 ± 0.01 0.82 ± 0.01
hipped 0.81 ± 0.03 0.89 ± 0.02

69

APPENDIX D. COMPLETE RESULTS PER DATA SET

recall flat 0.91 ± 0.02 0.96 ± 0.01
hipped 0.73 ± 0.03 0.61 ± 0.03

fscore flat 0.88 ± 0.01 0.88 ± 0.01
hipped 0.77 ± 0.01 0.73 ± 0.02

accuracy overall 0.84 ± 0.01 0.84 ± 0.01

kappa overall 0.65 ± 0.02 0.62 ± 0.02

RF SVM

precision flat 0.87 ± 0.01 0.88 ± 0.01
hipped 0.88 ± 0.02 0.81 ± 0.04

recall flat 0.94 ± 0.01 0.90 ± 0.03
hipped 0.75 ± 0.03 0.78 ± 0.03

fscore flat 0.91 ± 0.01 0.89 ± 0.01
hipped 0.81 ± 0.01 0.79 ± 0.02

accuracy overall 0.87 ± 0.01 0.86 ± 0.02

kappa overall 0.72 ± 0.02 0.68 ± 0.03

Table D.1: Overview of all performance metrics for the roof shape data set

70

APPENDIX D. COMPLETE RESULTS PER DATA SET

D.2 Roof Material

VGG Inception Xception

precision concrete 0.70 ± 0.05 0.78 ± 0.06 0.72 ± 0.07
metal 0.71 ± 0.01 0.60 ± 0.01 0.65 ± 0.02

roof tiles 0.63 ± 0.05 0.69 ± 0.14 0.66 ± 0.08

recall concrete 0.50 ± 0.07 0.14 ± 0.07 0.31 ± 0.11
metal 0.86 ± 0.04 0.98 ± 0.02 0.92 ± 0.03

roof tiles 0.38 ± 0.07 0.02 ± 0.02 0.21 ± 0.09

fscore concrete 0.58 ± 0.03 0.22 ± 0.09 0.41 ± 0.10
metal 0.78 ± 0.01 0.75 ± 0.00 0.76 ± 0.01

roof tiles 0.47 ± 0.04 0.03 ± 0.03 0.30 ± 0.11

accuracy overall 0.69 ± 0.00 0.61 ± 0.01 0.65 ± 0.01

kappa overall 0.41 ± 0.01 0.10 ± 0.04 0.27 ± 0.04

None BOW VLAD

precision concrete 0.60 ± 0.01 0.60 ± 0.03 0.67 ± 0.04
metal 0.71 ± 0.01 0.70 ± 0.01 0.71 ± 0.01

roof tiles 0.50 ± 0.05 0.53 ± 0.03 0.61 ± 0.03

recall concrete 0.53 ± 0.05 0.51 ± 0.03 0.53 ± 0.04
metal 0.78 ± 0.03 0.80 ± 0.03 0.84 ± 0.04

roof tiles 0.40 ± 0.03 0.37 ± 0.04 0.40 ± 0.05

fscore concrete 0.56 ± 0.03 0.55 ± 0.02 0.59 ± 0.02
metal 0.74 ± 0.01 0.74 ± 0.01 0.77 ± 0.01

roof tiles 0.44 ± 0.02 0.44 ± 0.03 0.48 ± 0.03

accuracy overall 0.66 ± 0.01 0.66 ± 0.01 0.69 ± 0.01

kappa overall 0.37 ± 0.02 0.36 ± 0.02 0.42 ± 0.01

LLC IFK

precision concrete 0.56 ± 0.03 0.67 ± 0.02
metal 0.69 ± 0.01 0.65 ± 0.01

roof tiles 0.47 ± 0.03 0.62 ± 0.02

recall concrete 0.52 ± 0.03 0.36 ± 0.04
metal 0.76 ± 0.02 0.90 ± 0.02

roof tiles 0.35 ± 0.03 0.20 ± 0.04
fscore concrete 0.54 ± 0.03 0.47 ± 0.04

metal 0.73 ± 0.01 0.76 ± 0.00
roof tiles 0.40 ± 0.02 0.30 ± 0.05

accuracy overall 0.64 ± 0.01 0.65 ± 0.01

kappa overall 0.33 ± 0.02 0.28 ± 0.03

71

APPENDIX D. COMPLETE RESULTS PER DATA SET

RF SVM

precision concrete 0.77 ± 0.04 0.58 ± 0.03
metal 0.69 ± 0.01 0.71 ± 0.01

roof tiles 0.69 ± 0.03 0.47 ± 0.05

recall concrete 0.45 ± 0.04 0.54 ± 0.04
metal 0.91 ± 0.02 0.74 ± 0.03

roof tiles 0.34 ± 0.04 0.43 ± 0.02

fscore concrete 0.56 ± 0.02 0.56 ± 0.03
metal 0.79 ± 0.00 0.73 ± 0.02

roof tiles 0.45 ± 0.03 0.45 ± 0.02

accuracy overall 0.70 ± 0.01 0.64 ± 0.02

kappa overall 0.40 ± 0.02 0.36 ± 0.03

Table D.2: Overview of all performance metrics for the roof material data set

72

APPENDIX D. COMPLETE RESULTS PER DATA SET

D.3 UC-Merced

VGG Inception Xception
precision agricultural 0.99 ± 0.03 0.98 ± 0.04 0.91 ± 0.13

airplane 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02
baseballdiamond 0.95 ± 0.05 1.00 ± 0.00 1.00 ± 0.00

beach 0.99 ± 0.02 0.93 ± 0.05 0.87 ± 0.06
buildings 0.88 ± 0.02 0.89 ± 0.03 0.84 ± 0.04
chaparral 0.97 ± 0.04 0.97 ± 0.04 1.00 ± 0.00

denseresidential 0.72 ± 0.17 0.54 ± 0.05 0.68 ± 0.09
forest 0.95 ± 0.04 0.97 ± 0.04 0.99 ± 0.02

freeway 0.85 ± 0.14 0.73 ± 0.16 0.85 ± 0.13
golfcourse 0.96 ± 0.06 0.92 ± 0.03 0.97 ± 0.04

harbor 0.99 ± 0.02 0.95 ± 0.04 0.98 ± 0.04
intersection 0.89 ± 0.06 0.79 ± 0.07 0.97 ± 0.05

mediumresidential 0.71 ± 0.11 0.92 ± 0.11 0.78 ± 0.13
mobilehomepark 0.84 ± 0.15 0.90 ± 0.08 0.91 ± 0.07

overpass 0.96 ± 0.02 0.96 ± 0.05 0.99 ± 0.02
parkinglot 1.00 ± 0.00 0.78 ± 0.11 0.94 ± 0.06

river 0.89 ± 0.08 0.82 ± 0.17 0.91 ± 0.12
runway 0.86 ± 0.13 0.93 ± 0.09 0.92 ± 0.07

sparseresidential 0.85 ± 0.01 0.86 ± 0.11 0.93 ± 0.05
storagetanks 0.97 ± 0.04 0.87 ± 0.08 0.85 ± 0.06
tenniscourt 0.93 ± 0.07 0.97 ± 0.04 0.99 ± 0.02

recall agricultural 0.93 ± 0.12 0.98 ± 0.04 0.99 ± 0.02
airplane 0.98 ± 0.02 0.94 ± 0.05 0.96 ± 0.04

baseballdiamond 0.98 ± 0.02 0.70 ± 0.03 0.89 ± 0.05
beach 1.00 ± 0.00 0.99 ± 0.02 0.99 ± 0.02

buildings 0.85 ± 0.09 0.89 ± 0.11 0.88 ± 0.09
chaparral 0.98 ± 0.02 0.98 ± 0.04 0.92 ± 0.14

denseresidential 0.64 ± 0.21 0.80 ± 0.13 0.73 ± 0.16
forest 1.00 ± 0.00 0.97 ± 0.06 0.98 ± 0.04

freeway 0.92 ± 0.14 0.98 ± 0.02 1.00 ± 0.00
golfcourse 0.88 ± 0.14 0.81 ± 0.22 0.80 ± 0.17

harbor 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
intersection 0.87 ± 0.12 0.89 ± 0.15 0.93 ± 0.09

mediumresidential 0.94 ± 0.04 0.41 ± 0.32 0.71 ± 0.19
mobilehomepark 0.74 ± 0.18 0.83 ± 0.10 0.92 ± 0.07

overpass 0.88 ± 0.07 0.78 ± 0.11 0.91 ± 0.06
parkinglot 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

river 0.89 ± 0.05 0.85 ± 0.14 0.74 ± 0.18
runway 0.81 ± 0.26 0.76 ± 0.30 0.90 ± 0.14

sparseresidential 0.87 ± 0.07 0.83 ± 0.10 0.85 ± 0.08
storagetanks 0.90 ± 0.04 0.83 ± 0.15 0.95 ± 0.06
tenniscourt 0.91 ± 0.09 0.92 ± 0.09 0.96 ± 0.04

fscore agricultural 0.95 ± 0.08 0.98 ± 0.02 0.95 ± 0.07
airplane 0.99 ± 0.01 0.97 ± 0.03 0.97 ± 0.02

baseballdiamond 0.96 ± 0.02 0.82 ± 0.02 0.94 ± 0.03
beach 1.00 ± 0.01 0.96 ± 0.03 0.92 ± 0.03

buildings 0.86 ± 0.06 0.89 ± 0.06 0.86 ± 0.06
chaparral 0.98 ± 0.02 0.98 ± 0.02 0.95 ± 0.08

73

APPENDIX D. COMPLETE RESULTS PER DATA SET

denseresidential 0.67 ± 0.19 0.64 ± 0.06 0.70 ± 0.11
forest 0.98 ± 0.02 0.97 ± 0.05 0.98 ± 0.02

freeway 0.87 ± 0.09 0.83 ± 0.11 0.91 ± 0.08
golfcourse 0.91 ± 0.08 0.84 ± 0.15 0.86 ± 0.11

harbor 1.00 ± 0.01 0.98 ± 0.02 0.99 ± 0.02
intersection 0.87 ± 0.05 0.83 ± 0.07 0.95 ± 0.06

mediumresidential 0.81 ± 0.07 0.48 ± 0.29 0.72 ± 0.11
mobilehomepark 0.77 ± 0.14 0.85 ± 0.05 0.91 ± 0.05

overpass 0.92 ± 0.04 0.86 ± 0.08 0.95 ± 0.04
parkinglot 1.00 ± 0.00 0.87 ± 0.07 0.97 ± 0.03

river 0.89 ± 0.04 0.83 ± 0.14 0.80 ± 0.13
runway 0.81 ± 0.19 0.80 ± 0.22 0.90 ± 0.08

sparseresidential 0.86 ± 0.04 0.84 ± 0.07 0.88 ± 0.05
storagetanks 0.93 ± 0.03 0.85 ± 0.11 0.89 ± 0.04
tenniscourt 0.92 ± 0.05 0.94 ± 0.05 0.97 ± 0.02

accuracy overall 0.90 ± 0.03 0.86 ± 0.03 0.91 ± 0.03

kappa overall 0.90 ± 0.03 0.86 ± 0.04 0.90 ± 0.03

None BOW VLAD

precision agricultural 0.92 ± 0.07 0.93 ± 0.10 0.98 ± 0.04
airplane 0.98 ± 0.02 0.97 ± 0.04 0.97 ± 0.02

baseballdiamond 0.99 ± 0.02 0.92 ± 0.03 0.94 ± 0.04
beach 0.95 ± 0.04 0.99 ± 0.02 0.99 ± 0.02

buildings 0.91 ± 0.08 0.83 ± 0.04 0.88 ± 0.08
chaparral 0.99 ± 0.02 0.95 ± 0.04 0.96 ± 0.03

denseresidential 0.74 ± 0.17 0.70 ± 0.16 0.76 ± 0.14
forest 0.94 ± 0.09 0.93 ± 0.04 0.98 ± 0.02

freeway 0.95 ± 0.03 0.90 ± 0.09 0.89 ± 0.08
golfcourse 0.89 ± 0.10 0.90 ± 0.10 0.92 ± 0.15

harbor 0.98 ± 0.04 0.97 ± 0.04 1.00 ± 0.00
intersection 0.98 ± 0.02 0.94 ± 0.08 0.92 ± 0.08

mediumresidential 0.70 ± 0.11 0.70 ± 0.10 0.76 ± 0.09
mobilehomepark 0.90 ± 0.08 0.88 ± 0.14 0.90 ± 0.09

overpass 0.95 ± 0.06 0.94 ± 0.05 0.92 ± 0.05
parkinglot 1.00 ± 0.00 0.97 ± 0.04 0.97 ± 0.02

river 0.92 ± 0.07 0.89 ± 0.04 0.92 ± 0.07
runway 0.93 ± 0.09 0.92 ± 0.09 0.95 ± 0.04

sparseresidential 0.92 ± 0.05 0.78 ± 0.09 0.86 ± 0.04
storagetanks 0.96 ± 0.02 0.95 ± 0.05 0.97 ± 0.04
tenniscourt 0.97 ± 0.03 0.96 ± 0.06 0.93 ± 0.06

recall agricultural 0.98 ± 0.02 0.92 ± 0.09 0.94 ± 0.07
airplane 0.99 ± 0.02 0.99 ± 0.02 1.00 ± 0.00

baseballdiamond 0.96 ± 0.04 0.99 ± 0.02 0.99 ± 0.02
beach 1.00 ± 0.00 0.96 ± 0.04 1.00 ± 0.00

buildings 0.82 ± 0.10 0.86 ± 0.07 0.79 ± 0.10
chaparral 0.95 ± 0.10 0.95 ± 0.10 0.98 ± 0.04

denseresidential 0.64 ± 0.15 0.61 ± 0.15 0.61 ± 0.14
forest 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

freeway 0.91 ± 0.10 0.93 ± 0.10 0.95 ± 0.06

74

APPENDIX D. COMPLETE RESULTS PER DATA SET

golfcourse 0.93 ± 0.10 0.91 ± 0.07 0.91 ± 0.07
harbor 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

intersection 0.98 ± 0.02 0.88 ± 0.10 0.89 ± 0.06
mediumresidential 0.91 ± 0.08 0.82 ± 0.08 0.90 ± 0.05
mobilehomepark 0.87 ± 0.09 0.84 ± 0.17 0.91 ± 0.10

overpass 0.98 ± 0.02 0.93 ± 0.07 0.89 ± 0.11
parkinglot 0.99 ± 0.02 0.99 ± 0.02 1.00 ± 0.00

river 0.83 ± 0.10 0.88 ± 0.14 0.91 ± 0.07
runway 0.96 ± 0.04 0.88 ± 0.17 0.96 ± 0.04

sparseresidential 0.84 ± 0.09 0.71 ± 0.14 0.79 ± 0.13
storagetanks 0.90 ± 0.05 0.82 ± 0.09 0.92 ± 0.09
tenniscourt 0.87 ± 0.05 0.91 ± 0.07 0.94 ± 0.06

fscore agricultural 0.95 ± 0.04 0.92 ± 0.06 0.96 ± 0.04
airplane 0.99 ± 0.01 0.98 ± 0.02 0.99 ± 0.01

baseballdiamond 0.97 ± 0.02 0.95 ± 0.02 0.96 ± 0.02
beach 0.97 ± 0.02 0.97 ± 0.02 1.00 ± 0.01

buildings 0.86 ± 0.07 0.84 ± 0.03 0.83 ± 0.08
chaparral 0.97 ± 0.06 0.95 ± 0.05 0.97 ± 0.02

denseresidential 0.68 ± 0.14 0.65 ± 0.15 0.67 ± 0.14
forest 0.97 ± 0.05 0.96 ± 0.02 0.99 ± 0.01

freeway 0.93 ± 0.05 0.91 ± 0.07 0.92 ± 0.06
golfcourse 0.90 ± 0.06 0.90 ± 0.03 0.90 ± 0.07

harbor 0.99 ± 0.02 0.99 ± 0.02 1.00 ± 0.00
intersection 0.98 ± 0.02 0.90 ± 0.06 0.90 ± 0.06

mediumresidential 0.79 ± 0.07 0.75 ± 0.09 0.82 ± 0.06
mobilehomepark 0.88 ± 0.02 0.84 ± 0.11 0.90 ± 0.04

overpass 0.97 ± 0.04 0.93 ± 0.04 0.90 ± 0.05
parkinglot 0.99 ± 0.01 0.98 ± 0.02 0.99 ± 0.01

river 0.87 ± 0.06 0.88 ± 0.09 0.91 ± 0.05
runway 0.94 ± 0.05 0.89 ± 0.10 0.96 ± 0.02

sparseresidential 0.87 ± 0.06 0.73 ± 0.09 0.82 ± 0.09
storagetanks 0.93 ± 0.03 0.88 ± 0.07 0.94 ± 0.05
tenniscourt 0.92 ± 0.04 0.93 ± 0.06 0.94 ± 0.05

accuracy overall 0.92 ± 0.01 0.89 ± 0.03 0.92 ± 0.01

kappa overall 0.92 ± 0.01 0.89 ± 0.03 0.91 ± 0.01

LLC IFK

precision agricultural 0.98 ± 0.04 0.94 ± 0.04
airplane 0.96 ± 0.03 0.96 ± 0.04

baseballdiamond 0.94 ± 0.04 0.90 ± 0.06
beach 0.95 ± 0.03 0.94 ± 0.04

buildings 0.86 ± 0.03 0.75 ± 0.04
chaparral 0.97 ± 0.05 0.95 ± 0.04

denseresidential 0.71 ± 0.12 0.62 ± 0.17
forest 0.95 ± 0.04 0.89 ± 0.08

freeway 0.88 ± 0.05 0.86 ± 0.06
golfcourse 0.89 ± 0.10 0.86 ± 0.14

harbor 0.96 ± 0.06 0.99 ± 0.02
intersection 0.90 ± 0.08 0.90 ± 0.06

75

APPENDIX D. COMPLETE RESULTS PER DATA SET

mediumresidential 0.68 ± 0.08 0.66 ± 0.14
mobilehomepark 0.92 ± 0.10 0.80 ± 0.13

overpass 0.89 ± 0.08 0.92 ± 0.07
parkinglot 1.00 ± 0.00 0.94 ± 0.06

river 0.90 ± 0.10 0.86 ± 0.05
runway 0.86 ± 0.09 0.89 ± 0.08

sparseresidential 0.88 ± 0.03 0.76 ± 0.10
storagetanks 0.95 ± 0.03 0.95 ± 0.05
tenniscourt 0.92 ± 0.05 0.89 ± 0.04

recall agricultural 0.89 ± 0.15 0.94 ± 0.07
airplane 0.99 ± 0.02 0.98 ± 0.02

baseballdiamond 0.96 ± 0.05 0.98 ± 0.02
beach 1.00 ± 0.00 0.99 ± 0.02

buildings 0.78 ± 0.07 0.74 ± 0.09
chaparral 0.97 ± 0.06 0.97 ± 0.06

denseresidential 0.60 ± 0.10 0.48 ± 0.21
forest 1.00 ± 0.00 1.00 ± 0.00

freeway 0.91 ± 0.10 0.92 ± 0.07
golfcourse 0.90 ± 0.10 0.88 ± 0.07

harbor 1.00 ± 0.00 0.99 ± 0.02
intersection 0.88 ± 0.08 0.75 ± 0.08

mediumresidential 0.84 ± 0.14 0.73 ± 0.09
mobilehomepark 0.83 ± 0.16 0.87 ± 0.12

overpass 0.90 ± 0.06 0.85 ± 0.11
parkinglot 0.99 ± 0.02 0.99 ± 0.02

river 0.82 ± 0.11 0.78 ± 0.09
runway 0.90 ± 0.06 0.91 ± 0.06

sparseresidential 0.84 ± 0.13 0.65 ± 0.20
storagetanks 0.88 ± 0.05 0.88 ± 0.13
tenniscourt 0.93 ± 0.04 0.86 ± 0.16

fscore agricultural 0.92 ± 0.09 0.94 ± 0.04
airplane 0.98 ± 0.02 0.97 ± 0.03

baseballdiamond 0.95 ± 0.02 0.94 ± 0.03
beach 0.98 ± 0.02 0.97 ± 0.03

buildings 0.82 ± 0.06 0.74 ± 0.04
chaparral 0.97 ± 0.04 0.96 ± 0.03

denseresidential 0.64 ± 0.10 0.53 ± 0.19
forest 0.98 ± 0.02 0.94 ± 0.05

freeway 0.89 ± 0.06 0.89 ± 0.04
golfcourse 0.89 ± 0.08 0.86 ± 0.09

harbor 0.98 ± 0.04 0.99 ± 0.01
intersection 0.89 ± 0.06 0.81 ± 0.06

mediumresidential 0.74 ± 0.09 0.68 ± 0.09
mobilehomepark 0.86 ± 0.09 0.82 ± 0.09

overpass 0.89 ± 0.06 0.88 ± 0.07
parkinglot 0.99 ± 0.01 0.96 ± 0.04

river 0.85 ± 0.08 0.81 ± 0.06
runway 0.87 ± 0.04 0.90 ± 0.05

sparseresidential 0.85 ± 0.07 0.69 ± 0.15
storagetanks 0.91 ± 0.02 0.91 ± 0.09

76

APPENDIX D. COMPLETE RESULTS PER DATA SET

tenniscourt 0.93 ± 0.03 0.86 ± 0.10

accuracy overall 0.90 ± 0.02 0.86 ± 0.02

kappa overall 0.89 ± 0.02 0.86 ± 0.02

RF SVM

precision agricultural 0.99 ± 0.02 0.98 ± 0.02
airplane 0.98 ± 0.02 0.98 ± 0.02

baseballdiamond 0.91 ± 0.04 0.93 ± 0.05
beach 0.96 ± 0.03 0.98 ± 0.02

buildings 0.79 ± 0.04 0.89 ± 0.04
chaparral 0.97 ± 0.04 1.00 ± 0.00

denseresidential 0.68 ± 0.17 0.60 ± 0.19
forest 0.96 ± 0.04 0.97 ± 0.04

freeway 0.92 ± 0.07 0.97 ± 0.04
golfcourse 0.90 ± 0.10 0.94 ± 0.03

harbor 0.98 ± 0.02 0.99 ± 0.02
intersection 0.92 ± 0.05 0.92 ± 0.05

mediumresidential 0.72 ± 0.10 0.70 ± 0.13
mobilehomepark 0.82 ± 0.15 0.86 ± 0.09

overpass 0.91 ± 0.10 0.96 ± 0.04
parkinglot 0.98 ± 0.02 0.99 ± 0.02

river 0.85 ± 0.13 0.92 ± 0.08
runway 0.91 ± 0.09 0.97 ± 0.05

sparseresidential 0.82 ± 0.08 0.89 ± 0.05
storagetanks 0.99 ± 0.02 1.00 ± 0.00
tenniscourt 0.93 ± 0.08 0.94 ± 0.07

recall agricultural 0.92 ± 0.14 0.98 ± 0.02
airplane 0.98 ± 0.02 0.98 ± 0.02

baseballdiamond 0.99 ± 0.02 0.98 ± 0.04
beach 0.99 ± 0.02 1.00 ± 0.00

buildings 0.80 ± 0.12 0.87 ± 0.07
chaparral 0.99 ± 0.02 0.99 ± 0.02

denseresidential 0.57 ± 0.19 0.62 ± 0.27
forest 0.99 ± 0.02 1.00 ± 0.00

freeway 0.96 ± 0.06 0.98 ± 0.04
golfcourse 0.83 ± 0.17 0.92 ± 0.09

harbor 1.00 ± 0.00 0.99 ± 0.02
intersection 0.83 ± 0.18 0.84 ± 0.16

mediumresidential 0.87 ± 0.06 0.81 ± 0.14
mobilehomepark 0.80 ± 0.11 0.80 ± 0.20

overpass 0.94 ± 0.04 0.93 ± 0.02
parkinglot 1.00 ± 0.00 1.00 ± 0.00

river 0.90 ± 0.04 0.94 ± 0.04
runway 0.87 ± 0.10 0.97 ± 0.04

sparseresidential 0.80 ± 0.10 0.92 ± 0.07
storagetanks 0.89 ± 0.08 0.90 ± 0.13
tenniscourt 0.87 ± 0.09 0.90 ± 0.11

fscore agricultural 0.95 ± 0.08 0.98 ± 0.02

77

APPENDIX D. COMPLETE RESULTS PER DATA SET

airplane 0.98 ± 0.02 0.98 ± 0.02
baseballdiamond 0.95 ± 0.02 0.95 ± 0.03

beach 0.98 ± 0.02 0.99 ± 0.01
buildings 0.79 ± 0.07 0.88 ± 0.05
chaparral 0.98 ± 0.02 0.99 ± 0.01

denseresidential 0.62 ± 0.19 0.60 ± 0.24
forest 0.98 ± 0.02 0.99 ± 0.02

freeway 0.94 ± 0.05 0.98 ± 0.02
golfcourse 0.85 ± 0.11 0.93 ± 0.04

harbor 0.99 ± 0.01 0.99 ± 0.01
intersection 0.86 ± 0.12 0.87 ± 0.11

mediumresidential 0.78 ± 0.05 0.73 ± 0.06
mobilehomepark 0.80 ± 0.10 0.82 ± 0.12

overpass 0.92 ± 0.07 0.94 ± 0.01
parkinglot 0.99 ± 0.01 1.00 ± 0.01

river 0.87 ± 0.06 0.93 ± 0.04
runway 0.89 ± 0.09 0.97 ± 0.04

sparseresidential 0.81 ± 0.08 0.91 ± 0.05
storagetanks 0.94 ± 0.06 0.94 ± 0.08
tenniscourt 0.90 ± 0.09 0.92 ± 0.07

accuracy overall 0.89 ± 0.02 0.92 ± 0.02

kappa overall 0.89 ± 0.02 0.92 ± 0.02

Table D.3: Overview of all performance metrics for the UC-Merced data set

78

Appendix E

Complete results significance tests

E.1 Networks

Shape Accuracy Kappa

Wilcoxon Wilcoxon
VGG Inception Xception VGG Inception Xception

VGG nan 0.005 0.005 VGG nan 0.005 0.005
Inception 0.005 nan 0.005 Inception 0.005 nan 0.005
Xception 0.005 0.005 nan Xception 0.005 0.005 nan

Tw P Tw P
FRIEDMAN 20.000 0.000 FRIEDMAN 20.000 0.000

Material Accuracy Kappa

Wilcoxon Wilcoxon
VGG Inception Xception VGG Inception Xception

VGG nan 0.005 0.005 VGG nan 0.005 0.005
Inception 0.005 nan 0.005 Inception 0.005 nan 0.005
Xception 0.005 0.005 nan Xception 0.005 0.005 nan

Tw P Tw P
FRIEDMAN 20.000 0.000 FRIEDMAN 20.000 0.000

UC-Merced Accuracy Kappa

Wilcoxon Wilcoxon
VGG Inception Xception VGG Inception Xception

VGG nan 0.080 0.593 VGG nan 0.080 0.593
Inception 0.080 nan 0.043 Inception 0.080 nan 0.043
Xception 0.593 0.043 nan Xception 0.593 0.043 nan

Tw P Tw P
FRIEDMAN 5.778 0.056 FRIEDMAN 5.778 0.056

Table E.1: Overview of Wilcoxon and Friedman tests for the fine-tuned VGG-16, InceptionV3 and
Xception network

79

APPENDIX E. COMPLETE RESULTS SIGNIFICANCE TESTS

E.2 Coding

Shape Accuracy Kappa

Wilcoxon Wilcoxon
None BOW VLAD LLC IFK cnn None BOW VLAD LLC IFK cnn

None nan 0.01 0.01 0.01 0.01 0.01 None nan 0.01 0.01 0.01 0.01 0.01
BOW 0.01 nan 0.01 0.01 0.01 0.01 BOW 0.01 nan 0.01 0.01 0.01 0.01
VLAD 0.01 0.01 nan 0.01 0.01 0.28 VLAD 0.01 0.01 nan 0.01 0.01 0.28
LLC 0.01 0.01 0.01 nan 0.02 0.01 LLC 0.01 0.01 0.01 nan 0.01 0.01
IFK 0.01 0.01 0.01 0.02 nan 0.01 IFK 0.01 0.01 0.01 0.01 nan 0.01
cnn 0.01 0.01 0.28 0.01 0.01 nan cnn 0.01 0.01 0.28 0.01 0.01 nan

Tw P Tw P
FRIEDMAN 43.66 0.00 FRIEDMAN 44.51 0.00

Material Accuracy Kappa

Wilcoxon Wilcoxon
None BOW VLAD LLC IFK cnn None BOW VLAD LLC IFK cnn

None nan 0.65 0.01 0.01 0.72 0.01 None nan 0.11 0.01 0.01 0.01 0.01
BOW 0.65 nan 0.01 0.01 0.33 0.01 BOW 0.11 nan 0.01 0.01 0.01 0.01
VLAD 0.01 0.01 nan 0.01 0.01 0.88 VLAD 0.01 0.01 nan 0.01 0.01 0.14
LLC 0.01 0.01 0.01 nan 0.01 0.01 LLC 0.01 0.01 0.01 nan 0.01 0.01
IFK 0.72 0.33 0.01 0.01 nan 0.01 IFK 0.01 0.01 0.01 0.01 nan 0.01
cnn 0.01 0.01 0.88 0.01 0.01 nan cnn 0.01 0.01 0.14 0.01 0.01 nan

Tw P Tw P
FRIEDMAN 43.37 0.00 FRIEDMAN 46.91 0.00

UC-Merced Accuracy Kappa

Wilcoxon Wilcoxon
None VLAD LLC IFK BOW cnn None VLAD LLC IFK BOW cnn

None nan 0.85 0.04 0.04 0.04 0.08 None nan 0.72 0.04 0.04 0.04 0.08
VLAD 0.85 nan 0.04 0.04 0.14 0.35 VLAD 0.72 nan 0.04 0.04 0.14 0.35
LLC 0.04 0.04 nan 0.08 1.00 0.50 LLC 0.04 0.04 nan 0.08 1.00 0.50
IFK 0.04 0.04 0.08 nan 0.04 0.07 IFK 0.04 0.04 0.08 nan 0.04 0.07

BOW 0.04 0.14 1.00 0.04 nan 0.50 BOW 0.04 0.14 1.00 0.04 nan 0.50
cnn 0.08 0.35 0.50 0.07 0.50 nan cnn 0.08 0.35 0.50 0.07 0.50 nan

Tw P Tw P
FRIEDMAN 16.63 0.01 FRIEDMAN 16.63 0.01

Table E.2: Overview of Wilcoxon and Friedman tests for the feature coding models and the
VGG-16 base line

80

APPENDIX E. COMPLETE RESULTS SIGNIFICANCE TESTS

E.3 Classifiers

Shape Accuracy Kappa

Wilcoxon Wilcoxon
RF SVM VGG RF SVM VGG

RF nan 0.01 0.26 RF nan 0.01 0.20
SVM 0.01 nan 0.01 SVM 0.01 nan 0.01
VGG 0.26 0.01 nan VGG 0.20 0.01 nan

Tw P Tw P
FRIEDMAN 15.85 0.00 FRIEDMAN 15.80 0.00

Material Accuracy Kappa

Wilcoxon Wilcoxon
RF SVM VGG RF SVM VGG

RF nan 0.01 0.01 RF nan 0.01 0.11
SVM 0.01 nan 0.01 SVM 0.01 nan 0.01
VGG 0.01 0.01 nan VGG 0.11 0.01 nan

Tw P Tw P
FRIEDMAN 18.20 0.00 FRIEDMAN 15.80 0.00

UC-Merced Accuracy Kappa

Wilcoxon Wilcoxon
RF SVM VGG RF SVM VGG

RF nan 0.04 0.14 RF nan 0.04 0.20
SVM 0.04 nan 0.08 SVM 0.04 nan 0.08
VGG 0.14 0.08 nan VGG 0.20 0.08 nan

Tw P Tw P
FRIEDMAN 6.00 0.05 FRIEDMAN 6.00 0.05

Table E.3: Overview of Wilcoxon and Friedman tests for the RF model, the SVM model and the
VGG-16 base line

81

Appendix F

Random Search Optimal
Parameters

82

APPENDIX F. RANDOM SEARCH OPTIMAL PARAMETERS

Fold [1] [2] [3] [4] [5]

Shape 1 200 5 1 sqrt 60
2 100 5 2 sqrt 60
3 800 2 1 sqrt 100
4 400 5 1 sqrt 80
5 200 2 1 sqrt 40
6 800 2 1 sqrt 100
7 1600 5 1 sqrt 80
8 200 5 1 sqrt None
9 200 2 1 sqrt 100
10 200 2 1 sqrt 40

Fold [1] [2] [3] [4] [5]

Material 1 800 2 1 sqrt 80
2 1600 2 1 sqrt 20
3 100 2 1 sqrt 60
4 200 2 1 sqrt 80
5 1600 2 1 sqrt 100
6 800 2 1 sqrt 40
7 200 2 1 sqrt 80
8 1600 2 1 sqrt 80
9 800 2 1 sqrt 80
10 400 2 1 sqrt 40

Fold [1] [2] [3] [4] [5]

UC-Merced 1 200 5 1 sqrt 80
2 1600 2 2 sqrt 40
3 1600 2 2 sqrt 20
4 1600 2 1 sqrt 60
5 400 2 1 sqrt 60

[1] Number of trees
[2] Minimum samples at split
[3] minimum samples at leaf
[4] maximum features
[5] Max depth

Table F.1: Optimal parameters found for RF by the Random Search

83

Appendix G

Pre-trained CNNs as Feature
Extractor

VGG InceptionV3 Xception
precision flat 0.80 ± 0.01 0.84 ± 0.02 0.86 ± 0.01

hipped 0.70 ± 0.05 0.74 ± 0.04 0.76 ± 0.04

recall flat 0.86 ± 0.04 0.87 ± 0.03 0.88 ± 0.03
hipped 0.60 ± 0.03 0.69 ± 0.04 0.73 ± 0.03

fscore flat 0.83 ± 0.02 0.85 ± 0.01 0.87 ± 0.01
hipped 0.65 ± 0.01 0.72 ± 0.02 0.74 ± 0.02

accuracy overall 0.77 ± 0.02 0.81 ± 0.02 0.82 ± 0.02

kappa overall 0.47 ± 0.03 0.57 ± 0.03 0.61 ± 0.03

Table G.1: Results of pre-trained networks (no fine-tuning) as feature extractors on the roof shape
data set

84

APPENDIX G. PRE-TRAINED CNNS AS FEATURE EXTRACTOR

VGG InceptionV3 Xception

precision concrete 0.43 ± 0.02 0.49 ± 0.04 0.50 ± 0.03
metal 0.66 ± 0.01 0.68 ± 0.01 0.68 ± 0.01

roof tiles 0.36 ± 0.04 0.40 ± 0.06 0.44 ± 0.05

recall concrete 0.47 ± 0.05 0.49 ± 0.06 0.53 ± 0.04
metal 0.66 ± 0.06 0.69 ± 0.06 0.69 ± 0.04

roof tiles 0.30 ± 0.04 0.37 ± 0.05 0.35 ± 0.06

fscore concrete 0.45 ± 0.02 0.49 ± 0.03 0.51 ± 0.01
metal 0.66 ± 0.03 0.68 ± 0.03 0.69 ± 0.02

roof tiles 0.32 ± 0.02 0.38 ± 0.03 0.39 ± 0.05

accuracy overall 0.55 ± 0.02 0.59 ± 0.02 0.60 ± 0.02

kappa overall 0.21 ± 0.01 0.27 ± 0.02 0.28 ± 0.02

Table G.2: Results of pre-trained networks (no fine-tuning) as feature extractors on the roof
material data set

85

	Contents
	Glossary
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Methodology
	Outline

	Background Information
	Related Work
	Convolutional Neural Network
	Convolutional Layers
	Pooling Layers
	Fully Connected Layers

	Feature Encoding
	Bag Of visual Words
	Vector of Locally Aggregated Descriptors
	Locality-constrained Linear Coding
	Improved Fisher Kernel

	Classifiers
	Support Vector Machine
	Random Forests

	Descriptions of Data Sets
	Sint Maarten
	Data Sources
	Description

	UC-Merced
	Data Preparation & Augmentation

	Experimental Setup
	Experimental Protocol
	Model & Parameter Selection
	Pre-trained Convolutional Neural Networks
	Encoding
	Classification

	Background on Evaluation Metrics
	Performance Metrics
	Statistical Tests

	Implementation Details

	Results
	Pre-trained networks
	Feature coding
	Classifiers

	Discussion
	Exploitation of CNN features
	Per data set evaluation
	Sint Maarten
	UC-Merced

	Practical Implications
	Conclusion
	Conclusions
	Limitations
	Future Research

	Bibliography
	Appendix
	Pre-trained networks available in Keras
	Weighted vs. Non-weighted training
	Architectures of Convolutional Neural Networks
	VGG-16
	InceptionV3
	Xception

	Complete results per data set
	Roof shape
	Roof Material
	UC-Merced

	Complete results significance tests
	Networks
	Coding
	Classifiers

	Random Search Optimal Parameters
	Pre-trained CNNs as Feature Extractor

