19,363 research outputs found
Interference in interacting quantum dots with spin
We study spectral and transport properties of interacting quantum dots with
spin. Two particular model systems are investigated: Lateral multilevel and two
parallel quantum dots. In both cases different paths through the system can
give rise to interference. We demonstrate that this strengthens the multilevel
Kondo effect for which a simple two-stage mechanism is proposed. In parallel
dots we show under which conditions the peak of an interference-induced orbital
Kondo effect can be split.Comment: 8 pages, 8 figure
The Wide-field High-resolution Infrared TElescope (WHITE)
The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated
in the first years of its life to carrying out a few (well focused in terms of
science objectives and time) legacy surveys.
WHITE would have an angular resolution of ~0.3'' homogeneous over ~0.7 sq.
deg. in the wavelength range 1 - 5 um, which means that we will very
efficiently use all the available observational time during night time and day
time. Moreover, the deepest observations will be performed by summing up
shorter individual frames. We will have a temporal information that can be used
to study variable objects.
The three key science objectives of WHITE are : 1) A complete survey of the
Magellanic Clouds to make a complete census of young stellar objects in the
clouds and in the bridge and to study their star formation history and the link
with the Milky Way. The interaction of the two clouds with our Galaxy might the
closest example of a minor merging event that could be the main driver of
galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of
dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the
equation of state from these obscured objects, study the formation of dust in
galaxies and build the first high resolution sample of high redshift galaxies
observed in their optical frame 3) A very wide weak lensing survey over that
would allow to estimate the equation of state in a way that would favourably
compete with space projects.Comment: Invited talk to the 2nd ARENA Conference : "The Astrophysical Science
Cases at Dome C" Potsdam 17-21 September, 200
Steady-state selection in driven diffusive systems with open boundaries
We investigate the stationary states of one-dimensional driven diffusive
systems, coupled to boundary reservoirs with fixed particle densities. We argue
that the generic phase diagram is governed by an extremal principle for the
macroscopic current irrespective of the local dynamics. In particular, we
predict a minimal current phase for systems with local minimum in the
current--density relation. This phase is explained by a dynamical phenomenon,
the branching and coalescence of shocks, Monte-Carlo simulations confirm the
theoretical scenario.Comment: 6 pages, 5 figure
Multivalued Fields on the Complex Plane and Conformal Field Theories
In this paper a class of conformal field theories with nonabelian and
discrete group of symmetry is investigated. These theories are realized in
terms of free scalar fields starting from the simple systems and scalar
fields on algebraic curves. The Knizhnik-Zamolodchikov equations for the
conformal blocks can be explicitly solved. Besides of the fact that one obtains
in this way an entire class of theories in which the operators obey a
nonstandard statistics, these systems are interesting in exploring the
connection between statistics and curved space-times, at least in the two
dimensional case.Comment: (revised version), 30 pages + one figure (not included), (requires
harvmac.tex), LMU-TPW 92-1
Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds
Two three-dimensional magnetohydrodynamical simulations of strongly
magnetized conical jets, one with a poloidal and one with a helical magnetic
field, have been performed. In the poloidal simulation a significant sheath
(wind) of magnetized moving material developed and partially stabilized the jet
to helical twisting. The fundamental pinch mode was not similarly affected and
emission knots developed in the poloidal simulation. Thus, astrophysical jets
surrounded by outflowing winds could develop knotty structures along a straight
jet triggered by pinching. Where helical twisting dominated the dynamics,
magnetic field orientation along the line-of-sight could be organized by the
toroidal flow field accompanying helical twisting. On astrophysical jets such
structure could lead to a reversal of the direction of Faraday rotation in
adjacent zones along a jet. Theoretical analysis showed that the different
dynamical behavior of the two simulations could be entirely understood as a
result of dependence on the velocity shear between jet and wind which must
exceed a surface Alfven speed before the jet becomes unstable to helical and
higher order modes of jet distortion.Comment: 25 pages, 15 figures, in press Astrophysical Journal (September
Bethe Ansatz Solution for a Defect Particle in the Asymmetric Exclusion Process
The asymmetric exclusion process on a ring in one-dimension is considered
with a single defect particle. The steady state has previously been solved by a
matrix product method. Here we use the Bethe ansatz to solve exactly for the
long time limit behaviour of the generating function of the distance travelled
by the defect particle. This allows us to recover steady state properties known
from the matrix approach such as the velocity, and obtain new results such as
the diffusion constant of the defect particle. In the case where the defect
particle is a second class particle we determine the large deviation function
and show that in a certain range the distribution of the distance travelled
about the mean is Gaussian. Moreover the variance (diffusion constant) grows as
L to the power 1/2 where is the system size. This behaviour can be related to
the superdiffusive spreading of excess mass fluctuations on an infinite system.
In the case where the defect particle produces a shock, our expressions for the
velocity and the diffusion constant coincide with those calculated previously
for an infinite system by Ferrari and Fontes.Comment: Latex, 23 page
Shock Profiles for the Asymmetric Simple Exclusion Process in One Dimension
The asymmetric simple exclusion process (ASEP) on a one-dimensional lattice
is a system of particles which jump at rates and (here ) to
adjacent empty sites on their right and left respectively. The system is
described on suitable macroscopic spatial and temporal scales by the inviscid
Burgers' equation; the latter has shock solutions with a discontinuous jump
from left density to right density , , which
travel with velocity . In the microscopic system we
may track the shock position by introducing a second class particle, which is
attracted to and travels with the shock. In this paper we obtain the time
invariant measure for this shock solution in the ASEP, as seen from such a
particle. The mean density at lattice site , measured from this particle,
approaches at an exponential rate as , with a
characteristic length which becomes independent of when
. For a special value of the
asymmetry, given by , the measure is
Bernoulli, with density on the left and on the right. In the
weakly asymmetric limit, , the microscopic width of the shock
diverges as . The stationary measure is then essentially a
superposition of Bernoulli measures, corresponding to a convolution of a
density profile described by the viscous Burgers equation with a well-defined
distribution for the location of the second class particle.Comment: 34 pages, LaTeX, 2 figures are included in the LaTeX file. Email:
[email protected], [email protected], [email protected]
Collisional properties of ultracold K-Rb mixtures
We determine the inter-species s-wave triplet scattering length a3 for all
K-Rb isotopic mixtures by measuring the cross-section for collisions between
41K and 87Rb in different temperature regimes. The positive value
a3=+163(+57,-12)a0 ensures the stability of binary 41K-87Rb Bose-Einstein
condensates. For the fermion-boson mixture 40K-87Rb we obtain a large and
negative scattering length which implies an efficient sympathetic cooling of
the fermionic species down to the degenerate regime.Comment: 4 pages, 4 figures; revised version (references added and small
changes
Detection methods for non-Gaussian gravitational wave stochastic backgrounds
We address the issue of finding an optimal detection method for a
discontinuous or intermittent gravitational wave stochastic background. Such a
signal might sound something like popcorn popping. We derive an appropriate
version of the maximum likelihood detection statistic, and compare its
performance to that of the standard cross-correlation statistic both
analytically and with Monte Carlo simulations. The maximum likelihood statistic
performs better than the cross-correlation statistic when the background is
sufficiently non-Gaussian. For both ground and space based detectors, this
results in a gain factor, ranging roughly from 1 to 3, in the minimum
gravitational-wave energy density necessary for detection, depending on the
duty cycle of the background. Our analysis is exploratory, as we assume that
the time structure of the events cannot be resolved, and we assume white,
Gaussian noise in two collocated, aligned detectors. Before this detection
method can be used in practice with real detector data, further work is
required to generalize our analysis to accommodate separated, misaligned
detectors with realistic, colored, non-Gaussian noise.Comment: 25 pages, 12 figures, submitted to physical review D, added revisions
in response to reviewers comment
Linux kernel compaction through cold code swapping
There is a growing trend to use general-purpose operating systems like Linux in embedded systems. Previous research focused on using compaction and specialization techniques to adapt a general-purpose OS to the memory-constrained environment, presented by most, embedded systems. However, there is still room for improvement: it has been shown that even after application of the aforementioned techniques more than 50% of the kernel code remains unexecuted under normal system operation. We introduce a new technique that reduces the Linux kernel code memory footprint, through on-demand code loading of infrequently executed code, for systems that support virtual memory. In this paper, we describe our general approach, and we study code placement algorithms to minimize the performance impact of the code loading. A code, size reduction of 68% is achieved, with a 2.2% execution speedup of the system-mode execution time, for a case study based on the MediaBench II benchmark suite
- …
