Two three-dimensional magnetohydrodynamical simulations of strongly
magnetized conical jets, one with a poloidal and one with a helical magnetic
field, have been performed. In the poloidal simulation a significant sheath
(wind) of magnetized moving material developed and partially stabilized the jet
to helical twisting. The fundamental pinch mode was not similarly affected and
emission knots developed in the poloidal simulation. Thus, astrophysical jets
surrounded by outflowing winds could develop knotty structures along a straight
jet triggered by pinching. Where helical twisting dominated the dynamics,
magnetic field orientation along the line-of-sight could be organized by the
toroidal flow field accompanying helical twisting. On astrophysical jets such
structure could lead to a reversal of the direction of Faraday rotation in
adjacent zones along a jet. Theoretical analysis showed that the different
dynamical behavior of the two simulations could be entirely understood as a
result of dependence on the velocity shear between jet and wind which must
exceed a surface Alfven speed before the jet becomes unstable to helical and
higher order modes of jet distortion.Comment: 25 pages, 15 figures, in press Astrophysical Journal (September