View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Ghent University Academic Bibliography

Linux Kernel Compaction
through Cold Code Swapping

Dominique Chanet!, Javier Cabezas?, Enric Morancho?, Nacho Navarro?,
Koen De Bosschere!

! Department of Electronics and Information Systems
Ghent University
B-9000 Ghent, Belgium
{dchanet ,kdb}@elis.UGent .be
2 Department of Computer Architecture
Technical University of Catalonia
E-08034 Barcelona, Spain
{jcabezas,enricm,nacho}@ac.upc.edu

Abstract. There is a growing trend to use general-purpose operating
systems like Linux in embedded systems. Previous research focused on us-
ing compaction and specialization techniques to adapt a general-purpose
OS to the memory-constrained environment presented by most embed-
ded systems. However, there is still room for improvement: it has been
shown that even after application of the aforementioned techniques more
than 50% of the kernel code remains unexecuted under normal system
operation. We introduce a new technique that reduces the Linux kernel
code memory footprint through on-demand code loading of infrequently
executed code, for systems that support virtual memory. In this paper,
we describe our general approach, and we study code placement algo-
rithms to minimize the performance impact of the code loading. A code
size reduction of 68% is achieved, with a 2.2% execution speedup of the
system-mode execution time, for a case study based on the MediaBench
II benchmark suite.

1 Introduction

In recent years, embedded systems have become increasingly complex. For ex-
ample, mobile phones have evolved from relatively simple devices that provide
phone calls and text messaging to veritable multi-media devices that also take
pictures, play music and movies, surf the Internet and have extensive contact
management and calendaring functionality. Due to this trend, the complexity of
the software running on these devices has risen exponentially. Developers turn
more and more to pre-built components and high-level programming languages
in order to meet the functionality requirements and time-to-market pressure in
highly competitive markets. This also concerns the operating system used on
these devices: there is a growing trend to use general-purpose operating sys-
tems. Most of the attention has gone into Linux, as it is freely available, and its

https://core.ac.uk/display/55738977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

open source nature gives developers full control, allowing them to adapt the OS
in any way they see fit.

General-purpose operating systems offer a large number of functionalities
that are unneeded in embedded devices, as they have been developed for desk-
top or server computers that must support a very wide range of applications and
peripheral devices. The use of such systems can vary widely over their lifetime.
Embedded systems, by contrast, usually have a well-defined and limited func-
tionality, with software and hardware configurations that do not change over the
device’s lifetime. As embedded systems typically have strict memory constraints,
it is desirable to remove as much of the overhead incurred by the unnecessary
features of general-purpose operating systems as possible. Part of the overhead
can be avoided by configuring the OS kernel appropriately at build time to ex-
clude unnecessary drivers and features. However, this configuration facility is
usually not fine-grained enough to remove all of the unneeded code and data.
Recent research on link-time compaction and specialization of general-purpose
OS kernels [7,19] has shown that even on a fully-configured Linux kernel signifi-
cant amounts of code can be removed if the hardware and software configuration
of the target system are known and fixed.

However, in [8] it is shown that, even after application of the aforementioned
compaction and specialization techniques, less than half the code in the kernel is
executed during normal system operation. Part of the unexecuted code is there to
handle unexpected situations, like hardware failures. The other unexecuted code
is in effect unreachable, but is not detected by the aforementioned specialization
techniques due to the limitations of static analysis. The authors of [8] propose to
store all the unexecuted code (henceforth called frozen code, a term introduced
by Citron et al. [9]) in memory in a compressed form, and later decompress
only those parts that are needed at run time. However, under their approach it
is impossible to determine a hard upper bound for the amount of memory the
kernel’s code memory footprint, as once-decompressed code cannot be removed
from memory any more due to concurrency issues that arise from the inherent
multithreadedness of the Linux kernel.

In this paper, we propose a novel approach to solve this problem for systems
that have support for virtual memory. While virtual memory support is not yet
available for all embedded devices, it is already supported by several important
embedded processor families, such as the Intel XScale [2], the Texas Instrument
OMAP [4], and the MIPS 4K [3]. Based on profile information, our technique
selects code that will be put aside from the kernel’s resident memory image and
loaded on demand whenever it is needed. To avoid the high latencies of loading
code from disk, the removed code will be stored in a fast off-line memory (e.g.
Flash memory). Contrary to the aforementioned approach [8], our technique al-
lows to determine an upper bound on the kernel’s code memory footprint. In this
paper, the technique is evaluated for the Linux kernel on the i386 architecture,
but it is easily portable to other architectures and operating systems.

For this paper, we have chosen to focus on Flash memory as the secondary
memory in which the not-loaded code is stored. We believe Flash memory is a

good fit for this technique, as it is sufficiently fast, and it is typically already
available in embedded systems to store the device’s firmware. Some typical de-
vices that can be targeted by our technique are the Linksys WRT54GL wireless
internet router (16 MiB of RAM, 4 MiB of Flash ROM), the Linksys NSLU2 net-
work storage server for home networks (32 MiB of RAM, 8 MiB of Flash ROM)
and the Devon NTA 6010A thin client (64 MiB of RAM, 64 MiB of Flash ROM).
All of these devices have a fixed function, and all of them run the Linux kernel
as their operating system.

It is important to note that the technique proposed in this paper is not the
ultimate solution to the memory woes of embedded systems. Rather, it is a
building block in a total solution. The OS kernel is only a part of the software
that runs on the device. It is equally important to reduce the memory footprint
of the user space programs through techniques such as link-time compaction [10]
or code compression [11].

The remainder of this paper is organized as follows. In the next section, we
give a general overview of our approach. Section 3 details the code selection
and layout algorithms that are instrumental to limiting the performance impact
of our technique. In Section 4 we discuss the implementation. In Section 5 the
technique is evaluated. Section 6 reviews related work, and we draw conclusions
and present future work in Section 7.

2 General approach

In the most general sense, we wish to develop an on-demand code loading scheme
in order to reduce the static RAM footprint of an operating system kernel. The
most important design criteria are:

— Reliability: the correct working of the kernel must in no way be compromised
by the code loading scheme.

— Performance: the OS kernel is a performance-critical part of the system,
especially as it communicates directly with the hardware devices. Loading
code must not slow down the system too much.

— Guaranteed size reduction: unlike the approach proposed in [8], our approach
should guarantee a hard upper bound on the kernel code memory usage, and
it should be considerably lower than that of the original kernel. Note that
this does not mean that the user can set a limit up front (e.g. “the kernel code
should only use = bytes of memory”) but rather that, after our technique
is applied, the user knows exactly how much memory will be used by the
kernel code.

— Transparency: there should be no major rewriting or manual annotation of
the kernel code necessary.

— Automation: the code to be loaded on demand must be selected and parti-
tioned into loadable fragments automatically. Users of the technique should
not need to have an intimate knowledge of the kernel code.

The requirement of a hard upper bound on the kernel code’s memory usage
implies that any suitable scheme not only implements on-demand code loading,

but also code eviction whenever the memory allocated for the kernel code is full
and new code needs to be loaded. However, due to the inherent multithreaded
nature of most OS kernels, this raises concurrency issues. If a code fragment
has to be evicted, the scheme must ensure the reliable execution of the kernel
threads that may currently be executing the evicted code fragment. Automat-
ically inserting locks in the kernel code to protect the loadable code fragments
from untimely eviction creates a very real risk of introducing deadlocks. There-
fore, an alternative to the introduction of locking must be found to guarantee
the kernel’s reliability.

In the remainder of this section, we first investigate the Linux kernel’s module
loading scheme, which can be considered a form of on-demand code loading, and
then propose our own solution to the problem.

2.1 Linux Kernel Modules

The Linux build system allows the developer to compile parts of the kernel
(e.g., certain hardware drivers) as loadable modules. These modules can then
later be loaded on demand when their functionality is needed. This facility is
mostly intended for the distribution of kernels for generic machines. Drivers for a
wide range of peripherals are compiled as modules, and upon booting the kernel
then loads only those drivers that are necessary for the specific hardware it is
running on. We feel this scheme is less suited to embedded systems, where the
hardware is known in advance and the necessary drivers can easily be compiled
into the kernel, obviating the need for the module loading code altogether and
thus reducing the kernel’s code size. Furthermore, the module granularity is
determined by the kernel’s configuration system, and this is not fine-grained
enough for our purposes. We wish to remove individual, infrequently executed,
code paths from a driver or kernel subsystem, and not a driver or subsystem as
a whole.

2.2 Our Solution

With our technique, which is only applicable to platforms that support virtual
memory, the infrequently executed (henceforth called cold) code in the kernel
is removed from physical memory, even though it is still present in the kernel’s
virtual memory image, and stored on a fast secondary storage medium. This
storage is preferably Flash memory as this is already available in most embedded
systems for storing the device’s firmware. However, there are other possibilities,
like storing the cold code in a compressed form in main memory (thus improving
on [8]). When the kernel tries to execute the cold code, a page fault occurs. The
(modified) page fault handler then locates the needed page in the secondary
memory, loads it in one of a set of pre-allocated physical page frames and adjusts
the page tables to map it to the correct virtual address, after which execution
can continue. This basically means that the page fault trap is used as the trigger
to load code.

The only modification necessary to the kernel source code is the extension of
the page fault handler to insert the code loading mechanism. As such, we feel
the transparency requirement has been fulfilled.

e "
Thread | | Viin P !~ PFH —> Viin P, P:

: i v
Thread 2 WERIRSNN —> PFH |, — Va2in P,

&

| Fault I
| |
| |
[T
To T T T. |V

\4

-

Fig. 1. An example of the concurrency issues involved in evicting code from memory.
The left side of the figure shows a time line of the execution of two different threads, the
right side shows the contents of the code cache at times Ty, 71 and T>. The downward-
pointing arrow indicates the next page to be replaced according to the replacement
policy.

In order to fulfill the “hard upper bound on memory usage” requirement, we
use a fixed-size code cache of physical page frames to map the cold code. The
cache is managed through some replacement policy (for instance, round robin)
that does not explicitly check whether code on a page selected for eviction is
being executed in another thread. Nevertheless, the reliability of the system is
not compromised. This is illustrated in Figure 1. Assume there are two threads in
the kernel, the cache can hold two pages, and we use a round-robin replacement
policy. Thread 1 is executing cold code from virtual page V7 in the physical cache
frame P;, while thread 2 is executing hot, non-swappable code. The second
cache frame contains a previously loaded cold page Vg from which no code is
being executed any more. At some point, the second thread has to execute some
cold code from virtual page V5, which is currently not in the cache, causing
a page fault. The page fault handler runs in the execution context of thread
2, locates the necessary code in secondary memory and because of the round-
robin replacement policy decides to put V5 in P;. Once V; is unmapped from
memory, a page fault occurs in thread 1 when the next instruction in this thread
is loaded. The page fault handler runs in the context of thread 1, find V; in
secondary storage and map it in P, because of the round-robin policy, after
which execution in thread 1 can continue as before. While this scenario means
that thread 1 has been temporarily interrupted, the integrity of the execution

has not been compromised. In the worst case, this scenario could cause a cascade
of code cache refills for all kernel threads, but it is easily shown that the system
will not deadlock as long as there are at least as many code cache frames as
there are kernel threads.

There is only one manual step involved in selecting which code is loaded on
demand: the profiling step. The user has to run an instrumented kernel on the
target system in order to collect a basic block profile. This profile is then used
to identify the cold code in the kernel, and from then on the whole process runs
without user intervention. This satisfies the automation design criterium.

In order to fulfill the performance requirement, there are several issues we
have to take into account. First, loading the page from secondary memory should
be sufficiently fast. We believe this requirement to be fulfilled with the use of
Flash memory as a secondary storage medium. For currently available Flash
memory parts (Intel Embedded Strataflash P33), a 4 KiB page can be read in
approximately 40 microseconds. As only code, which is read-only, is swapped in,
there is no need to write back pages to Flash memory when they are evicted
from memory, avoiding costly Flash write operations that would slow down the
process. Secondly, only cold code should be swapped out in this way, to reduce
the amount of needed code cache refills. Thirdly, an intelligent code placement
algorithm should be used to avoid that related cold code fragments span page
boundaries, because this would cause more code cache refills than necessary. Our
code placement algorithms are detailed in Section 3.2.

Our approach is essentially a variation on the well-known virtual memory
swapping technique [20]. Generic swapping can store any virtual memory page
from any process on a secondary storage medium (typically a hard disk), thus
freeing up physical memory for other virtual memory pages. Because of the high
latency involved in reading a page from disk, the OS usually puts the process
causing a page fault to sleep and schedules another process to run instead. This
makes this technique less suitable for use in the OS kernel itself, and indeed
Linux does not implement swapping for kernel memory. While this has been
repeatedly proposed in the past, the kernel developers reject the idea because of
the amount of timing-critical code in the kernel that cannot sleep. Separating this
timing-critical code and data from other code and data would be too involved
and error-prone to be practical [5].

We believe that our approach is not susceptible to these objections. As Flash
memory is an order of magnitude faster than hard disks, there is no need to
put the faulting execution thread to sleep, thus avoiding the problems usually
associated with swapping out kernel memory.

Note that it would also be possible to extend this technique to the kernel’s
read-only data (i.e., strings for error description). However, we have left this
problem for future work. Extending the technique to incorporate writable data
is not advisable, as Flash memory wears down after too many write cycles.
Consequently, the repeated write-back operations that swapping out writable
data would entail, would severely limit the device’s lifetime. Furthermore, the
write-back operations would significantly slow down the swapping process.

3 Swappable Code Selection and Placement

In this section, we discuss how the code to be loaded on demand is selected, and
we present the code layout algorithm that maps the swappable code to individual
virtual memory pages in such a way that the need for code loading operations
is minimized.

3.1 Code Selection

As mentioned in Section 2.2, only infrequently executed code is considered for
on-demand code loading. Based on basic block profile information gathered for
the kernel (the instrumentation technique is discussed in Section 4.2), the kernel
code is divided into three categories:

1. The core code: this is the code that always has to be present in memory for
the system to work correctly. Basically this portion of the code consists of
all code that can be executed before our code loading mechanism is initial-
ized, the page fault handling mechanism and the code needed to read the
secondary storage medium.

2. The base code: this is the frequently executed (hot) kernel code, which we
want to keep permanently resident for performance reasons, even though
there are no technical difficulties in swapping it out.

3. The swappable code: this is the remaining code, which is either infrequently
(cold) or never (frozen) executed. This is the code that is removed from the
kernel image and stored on the secondary storage medium for on-demand
loading.

It is important to note that by design the Linux kernel code is split into
two categories: initialization code and non-initialization code, henceforth called
init code and non-init code respectively. Because the kernel’s first task at boot
time is to initialize the system and create an environment in which application
programs can run, it contains a lot of code and data that is only used once at
boot time. As soon as this initialization code and data are no longer needed, the
kernel removes them from memory. As such it is not very useful to apply the
on-demand code loading technique to the init code: by the time the user space
processes start executing, and the device’s full memory capacity is needed, it
is already removed from memory. Consequently, we consider all init code to be
part of the core code.

As mentioned before, all code that is executed before our code loading mech-
anism is initialized has to be considered core code. While most of this code is
init code, it also includes a number of non-init utility procedures that are called
from the init code. We can reduce the amount of non-init core code by dupli-
cating all non-init procedures that are only called from init code prior to the
initialization of our code loading mechanism. All calls from init code are moved
to the duplicate procedures, which can then be considered init code as well. The
original procedures are then no longer called prior to the initialization of our

7~ \ i

\2,

lv)

N2 S
1

)

_7

s N
)

\
/4—!

,.
\

©

(@ (b)

s

®<_!

Fig. 2. A slice of the call graph (a) before and (b) after procedure duplication. Gray
blocks represent init code, white blocks non-init code. Nodes with heavy borders are
considered core code, those with a dashed border are infrequently executed, those with
a solid border are frequently executed.

mechanism, and can be considered swappable. As the init code is released from
memory during the boot process, the duplicated procedures incur no memory
overhead during the system’s steady state operation.

Figure 2 illustrates this process. In part (a) we see a slice of the kernel’s call
graph before duplication. Non-init procedure D is called by init procedures A
and B before the code loading mechanism is initialized. The call from non-init
procedure C can only occur after the mechanism is initialized. Because of the calls
from A and B, D and its descendants in the call graph E and F must be considered
core code. In part (b) the situation after duplication is shown. F is not duplicated
as it is hot code, and is swapped out anyway. The duplicated procedures D’
and E’ are only reachable from init code, and can thus be considered init code
themselves. The original procedures D and E can now only be called after the
code loading mechanism is initialized and can hence be considered swappable
instead of core code.

3.2 Code Placement

The idea of using code placement techniques as a means to minimize page faults
has been studied before. An overview of the existing literature can be found in
Section 6.3. All existing algorithms use some variation on run-time profile data
as input, and of course they concentrate on achieving a good placement for the
most-frequently executed code. As we only have to place the least-frequently
executed code, for which there is much less profile information available, these
algorithms are not guaranteed to achieve good results. This is especially true in
the case where only frozen code is considered swappable, because for this code
all execution counts are zero.

Therefore, we have implemented two different code placement algorithms.
The first makes use of whatever profile information is available to achieve a
good placement, whereas the second aims to minimize, for each entry point in
the swappable code, the total number of pages needed to load all swappable code
that is directly reachable from that entry point. The second algorithm makes no
use of profile information and relies only on an analysis of the static structure
of the code. Both algorithms assume that the swappable code can be placed
independently from the hot and core code, i.e. there are no fall-through control
flow paths connecting cold code to other code. How this is achieved in practice
is explained in Section 4.3.

The profile-based algorithm In this algorithm, which is similar to the one
proposed by Pettis and Hansen [23], the code is placed with a chain granularity.
A chain is a set of basic blocks that have to be placed in a predetermined order
because of control flow dependencies (e.g. fall-through paths or a function call
and its corresponding return site). Control flow between chains is always explicit,
in the form of function calls, returns or jumps. Consequently, the order of the
chains is not important for the correct working of the code. Indirect control
flow (i.e. indirect jumps and function calls) is not taken into account by the
algorithm.

We use a graph representation of the problem as proposed by Ferrari [14].
The graph nodes represent chains. While hot chains will not be placed on the
swappable pages, and their final layout will not be influenced by this algorithm,
they are also represented in the graph. The size of a node representing a cold
chain is equal to the size of the chain in bytes, whereas nodes representing hot
chains have size 0. The (undirected) graph edges represent direct control flow
between chains. The edge weights are computed by the following formula:

weight(e;;) = Z (1 + execcount(e))
e€(Ei—jUE; ;)

where E;_.; is the set of direct control flow edges from chain 4 to chain j and
execcount(e) is the traversal count of control flow edge e according to edge profile
information. In our current implementation, the edge profiles are estimated from
the basic block profile information we have available. It is also possible to obtain
exact edge profiles by inserting the appropriate instrumentation into the kernel,
just like we did for obtaining the basic block profiles, but, as shown in the
evaluation section, the estimated edge profiles are accurate enough to derive a
good code placement. The traversal counts are incremented by one to ensure that
the substantial body of frozen code in the kernel, whose edge traversal counts
are zero, is not ignored during placement. If each node is placed on a separate
virtual memory page, the graph’s total edge weight is an estimate of the number
of page faults that occur at run time.

The hot chains are represented in the graph to make sure that related cold
code fragments are not placed independently. For example, suppose a procedure
has a cold prologue and epilogue, but the actual procedure body is hot. As the

only way for the control to flow from the prologue to the epilogue is through
hot code, the prologue and epilogue chains would not be connected in the graph
if only the cold chains are represented. As a consequence, there is a big chance
that the prologue and epilogue are placed on different code pages, which would
result in two page faults for an execution of the procedure, as opposed to only
one when they are placed on the same page.

The nodes in the graph are clustered in such a way that node sizes never
exceed the virtual memory page size. This is done in three steps:

1. We try to minimize the total edge weight of the graph. This is done with
a greedy heuristic by iteratively selecting the heaviest edge whose head and
tail can still be merged without exceeding the page size. In case of a tie, we
select the edge with the maximum commonweight, which is defined as:

commonweight(e;;) = Z (weight(e;r) + weight(eji))
kesucc(i)Nsuce(y)

where size(i)+ size(j) + size(k) < PAGESIZE. In this way, we try to obtain
a graph with less, but heavier edges instead of one with many light edges. If
there still is a tie, we select the pair of nodes that exhibit the best locality,
i.e., the pair of pages that contain code that was placed closest together in
the original kernel. The intuition here is that code that was placed closely
together is likely to be related. After this step, the total edge weight cannot
be reduced any further.

2. We try to maximize the weight of individual edges by iteratively merging
sibling nodes (nodes not connected to each other but connected to a common
third node). In each iteration we select the nodes for whom the sum of the
weights of the edges connecting them to their common parent is maximal.
The idea behind this step is that, if more than one page is available in the
code cache, the probability of page j already being in the cache upon a
control transfer from page ¢ is proportional to weight(e;;).

3. For each connected subgraph, nodes are merged with a best fit algorithm.
This step minimizes the total number of pages needed for each connected
subgraph. We do not yet merge nodes from different subgraphs, because we
do not want to pollute the pages for one connected subgraph with code from
another subgraph. After all, the likelihood that node j is needed in memory
before node ¢ is removed from the code cache is higher if 7 and j belong to
the same connected subgraph.

The per-entry point minimization algorithm This algorithm makes no
use of profile information to guide the code placement. The swappable code is
first partitioned into single-entry regions that do not span procedure boundaries.
These single-entry regions (henceforth simply called regions) are the basic units
of code placement. Regions that have incoming control flow edges from base or
core code are called entry points. As a simplification, we assume that the entry
points are independent of each other, i.e., that the fact that entry point ¢ was

entered at time 7" has no influence on the probability of any specific entry point
j being entered at time T” > T. Under this assumption, it makes sense to place
the code in such a way that only a minimal amount of pages is reachable from
each entry point. After all, in the absence of meaningful profile information we
have to assume that all code paths through cold code are equally likely to be
followed, so we cannot favor one code path over another for placement on a
minimum number of pages.

Initially, each region is placed on its own page. Let P be the set of pages,
and E the set of entry points (E C P). We define two functions:

Vp € P : entries(p) = {e € E|p is reachable from e}

and
Ve € E : pcount(e) = t{p € P|e € entries(p)} .

entries(p) returns the set of entry points from which code on a page p is reach-
able, without passing through hot or core code. pcount(e) computes the number
of pages that are reachable from entry point e.

The code placement algorithm tries to minimize the pcount for each entry
point by iteratively executing the following steps:

1. Build the set M containing the entry points with maximal pcount.

2. Select pages p; and p; such that size(p;) + size(p;) < PAGESIZE and p;
and p; have a maximum number of entry points in common with M and
each other, i.e. (M N entries(p;) N entries(p;)) is maximal. In case there
are multiple eligible pairs, select the pair that has the most entry points in
common. Stop if no pair can be found.

3. Merge pages p; and p;.

Reducing fragmentation Both described code placement algorithms termi-
nate with a lot of small pages left that aren’t merged because there are no direct
control flow edges between the code on the pages. In order to reduce fragmen-
tation, a post-pass merges these small pages. This happens in two steps:

1. Small pages that contain code that was placed close together in the origi-
nal kernel are merged. If the code fragments originally were placed close to-
gether, they probably originate from the same source code file, which greatly
increases the likelihood of the code fragments being related to one another.

2. The remaining pages are merged using a best fit approach.

4 Implementation

In this section we discuss the actual implementation of our technique. The binary
rewriting operations are implemented with a modified version of the Diablo link-
time binary rewriting framework that is suitable for rewriting Linux kernels [8].
The rewriting intervenes in the kernel build process just after all object files

are linked together to create the executable kernel image (the so-called vmlinuz
file). Note that this is not the last step in the build process, as this executable
image is usually transformed into a self-extracting executable (the bzImage file)
to save disk space and reduce the kernel’s load time.

4.1 Linux/i386 Virtual Memory Management

Before describing our implementation, we review, focusing on the i386 archi-
tecture and Linux, address spaces, address translation, the organization of the
virtual address space and page fault handling.

Address Spaces and Address Translation The 1386 architecture supports
32-bit virtual address spaces and a 32-bit physical address space. Although ex-
tensions to i386 support bigger spaces, these are not relevant to the embedded
context and are henceforth ignored. Virtual to physical address translation is
performed by a paging mechanism. Pages are either 4 KiB or 4 MiB in size. The
page table is organized as a two-level structure:

— The first-level page table (Page Directory) is recorded on a 4 KiB page, con-
sisting of 1024 32-bit entries. Each entry contains a base physical address and
some flag bits (present (valid), access rights, accessed, dirty, page size, ...).
Each valid entry with the page size flag set represents a 4 MiB page; the
remaining valid entries point to second-level page tables.

— Each second-level page table is also comprised of a 4 KiB page divided into
32-bit entries. These entries are similar to those of the Page Directory, except
for the absence of the page size flag. Each valid entry of the second-level page
table represents a 4 KiB page.

Each process has its own Page Directory. The cr3 control register contains
the physical address of the Page Directory of the running process. On each
context switch, it is updated by the operating system.

Accessing either a Page Directory entry or a second-level page table entry
whose present (valid) flag is not set triggers a page fault exception. When this
happens, the virtual address that produced the fault is loaded into the cr2
control register and a code that reflects the exception cause is pushed on the
stack.

To speed up address translation, i386-family processors implement TLBs
(Translation Lookaside Buffers) that keep some page translations in a cache
memory. Storing a value in the cr3 control register flushes the TLBs. The TLBs
can also be flushed with a special instruction.

Organization of the Virtual Address Space Linux divides the 32-bit virtual
address space into the user space and the kernel space. While each active process
has its own user space, the kernel space is shared among all the processes.

The user space takes up the first 3 GiB of the virtual address space, up to
address Oxbfffffff. The fourth gigabyte of the address space is designated the

kernel space. The organization of the kernel space is dependent on whether the
physical memory size exceeds 896 MiB. As this is not the case in the memory-
constrained embedded devices we target, we ignore this possibility. The kernel
space is divided into three areas:

— Physical Memory Mapping: This area provides a one-to-one mapping of phys-
ical to virtual addresses. Each physical address pa is mapped to virtual
address 0xc0000000 + pa. Contiguous virtual pages in this area are also
contiguous in physical memory. The page table entries related to this area
are initialized at boot time.

— wvmalloc: This area avoids external fragmentation when the kernel allocates a
contiguous multiple-page virtual space; contiguous pages in this area of the
virtual space are not necessarily contiguous in the physical space. The area
starts at the virtual address VMALLOC_START (typically 8 MiB after the end
of the physical memory mapping) and ends at VMALLOC_END. Each allocation
in this area is separated by a 4 KiB safety gap from the previous allocation.
That is, the virtual pages adjacent to each allocation in this area are tagged
as invalid in the page table. The page table entries related to this area are
dynamically initialized as the vmalloc routine is called.

— Fiz-mapped addresses: This area allows mapping a virtual page to an arbi-
trary physical frame. This area is placed almost at the end of the virtual
address space. Fixed mappings are retrieved with the fix_to_virt routine.
At compile time, the compiler is able to substitute all valid references to this
routine with the corresponding virtual addresses. It is useful for subsystems
that need to know the virtual addresses at compile time. The page table
entries related to this area are dynamically initialized as the set_fixmap
routine is called.

Figure 3 shows a diagram with the location of the three areas and the security
gaps. We assume that vmalloc has been called twice, the first call has allocated
8 KiB and the second 4 KiB.

. 4 . .
£0000000 CUVLVOY VMALLOC VMALLOC ~ FIXADDR FFFFFFFF

phys .mem. START END START
Physical .
memory 8MiB gaK'l'; 4K|BZ“K':;4KiB 8KiB F:é'd"r':spspeesd 4KiB
mapping

Fig. 3. Organization of the kernel address space.

Note that the Page Directory for each process maps both the user and ker-
nel spaces. Moreover, the kernel maintains a Page Directory called the Master
Page Table that is initialized, at boot time, with the physical memory mapping.
During system operation, the kernel portion of a processes’ Page Directory is
initialized from the Master Page Table, and the Master Page Table is updated
as the kernel’s memory management routines are called.

Page Fault Handling The use of page fault exceptions on Linux depends on
which portion of the virtual address space (user or kernel) the address belongs
to.

In the user portion of the address space, page fault exceptions are mainly
related to triggering code cache page refill. However, other scenarios can also
produce these exceptions: copy-on-write handling, dynamic loading of the binary
file, stack growth and detecting invalid memory accesses.

In the kernel portion of the address space, page fault exceptions are not re-
lated to code cache refills because the whole Linux kernel is permanently resident
in physical memory. However, the kernel portion of the virtual address space can
be modified dynamically through several kernel routines. Although these modifi-
cations are reflected in the Master Page Table, they are not propagated into the
kernel portion of the Page Directory of all user space processes. Consequently,
if the processor is running in privileged mode using the Page Directory of the
running process, an exception may arise when accessing a kernel area outside
the physical-memory mapping. Then, the page fault handler is responsible for
synchronizing the contents of the Master Page Table with the process’ Page Di-
rectory. Note that the second-level page tables related to the kernel space are
shared by the kernel and by all processes, so those need not be synchronized.

4.2 Gathering Profile Information

As mentioned in Section 3, we need accurate basic block profile information to
select the code to be loaded on demand. To collect this information, we generate
an instrumented version of the kernel that is run on the system under typical
workloads. The instrumentation added to the kernel is very straightforward: an
extra zero-initialized data section is added to the kernel that contains a 32-bit
counter for each basic block in the kernel. At the beginning of each basic block
we insert an inc $counter instruction to increment the counter for that block.
As the inc instruction affects the processor’s condition flags, we need to make
sure that the original flags are restored if their value is still needed afterwards.
This can be determined using interprocedural register liveness analysis, which is
already provided by the link-time rewriting framework we use. If the flags need
to be preserved, a pushf instruction is added before and a popf instruction after
the inc.

There are no special accommodations for reading out the counter values.
The Linux kernel already offers the possibility to access the contents of the
kernel’s memory through the /proc/kcore interface, so the counter values are
read directly from this interface.

In the next step, where the swappable code is separated from the always-
resident (base and core) code, the basic block profile information is used to
distinguish hot code from cold code based on a user-configurable threshold value
T. For example, for T' = 0.95, the most-executed basic blocks that together
constitute (approximately) 95% of the kernel’s execution time is considered hot,
hence going into the base code partition. The hot code is identified with the
following algorithm:

1. Compute the control flow graph’s total weight. The total weight is defined
as W = Y1 | weight(block;), where n is the number of basic blocks in the
graph, weight(block;) is the execution count of the ith block multiplied by
its number of instructions.

2. Sort the basic blocks on execution count in descending order.

3. Walk the sorted block list, summing the block weights until the accumulated
weight is higher than or equal to T« W.

4. The control flow graph’s hotness threshold H is then equal to the execution
count of the last-visited block. All blocks whose execution count is higher
than or equal to H are considered hot, all other blocks are cold.

Note that this algorithm is not exact, though the approximation it provides is
sufficiently accurate to be useful.

4.3 Rewriting the Kernel

Our binary rewriter builds a control flow graph of the complete kernel, as de-
scribed in [8]. On this graph, some preliminary optimizations are performed to
reduce the kernel’s memory footprint. First, all unreachable code and data are
removed from the kernel. Next, using a technique described in [7], all non-init
code that is only reachable from the init sections (and is thus unreachable after
the init code is removed from memory) is identified and moved to the initializa-
tion code section. In this way, we minimize the amount of code that has to be
considered for swapping.

Based on the profile information, the remaining non-init code is divided into
core, base and swappable code. The swappable code is first partitioned into
single-entry regions, which are then made individually relocatable. This means
there are no control flow dependencies (such as fall-through paths or function
call and return pairs) between the different regions or between swappable and
always-resident code, so we can freely move the regions to new virtual addresses.
To make the regions individually relocatable, we just break up all fall-through
paths in and out of the regions by inserting direct jump instructions.

The swappable code is then partitioned into page-sized clusters according to
the algorithms described in Section 3.2. Each cluster is then placed in a new code
section, which is padded up to the 4KiB boundary. The rewriter’s code layout
phase then places these code sections in the virtual address region reserved for the
code cache and adjusts all jump offsets and addresses in the kernel accordingly.

The Linux kernel code assumes that virtual addresses belonging to the Phys-
ical Memory Mapping area can be translated to physical addresses just by sub-
tracting the constant 0xc0000000, that is, Linux assumes that this virtual ad-
dress range is always present in physical memory. Consequently, it makes no
sense to place the code cache in this virtual address range as we cannot free
the corresponding physical memory. Instead, we decided to place the code cache
outside the Physical Memory Mapping area, at the end of the vmalloc area.

After the kernel image is emitted as an ELF executable, a simple GNU
objcopy script extracts the swappable pages from the image and places them

in a second file. The remaining kernel image, which now no longer includes the
swappable pages, is then used to generate the bzImage file. The swappable pages
are stored in a separate partition of the device’s Flash memory, and the generated
bzImage is installed and booted just like a regular kernel.

4.4 The Modified Page Fault Handler

Our implementation is embedded into a driver statically linked in the Linux
kernel. The driver’s init procedure is called by the init kernel thread. This
procedure saves the address of the original page fault handler and replaces it
with a new handler, whose functionality is described later in this section. Also,
the initialization procedure reserves a virtual address range at the end of the
vmalloc area for the code cache. Moreover, it initializes the page table entries
corresponding to the swappable code pages in the Master Page Table. Although
the Linux kernel makes use, when possible, of 4 MiB pages, we should split the
4 MiB pages related to the swappable code because our implementation works
on a 4KiB page granularity. We create second-level page tables and initialize
their entries as not present. Splitting 4 MiB pages can affect the TLB hit rate.
Assuming that the kernel code size is smaller than 4 MiB, a TLB entry related
to a 4 MiB page table entry maps the entire kernel code space. Note that these
modifications to the Master Page Table are performed before creating any user
process, so it is not necessary to propagate them to any processes’ page tables.

When a page fault occurs, our new page fault handler checks if the virtual
address responsible for the fault belongs to the swappable code address range.
If that is not the case, control is handed over to the original page fault handler.
Otherwise, our handler deals with the fault: a page is allocated in the code cache,
the corresponding page is copied from secondary storage to physical memory,
the corresponding second-level kernel page table is updated accordingly, and the
faulting instruction is re-executed. Note that swapping cold pages in and out of
memory does not affect the first-level page tables. It only affects the second-level
kernel space page tables, which are shared among the kernel and all processes.

We have implemented three basic replacement algorithms: round robin, ran-
dom and not recently used (NRU). The latter is implemented by periodically
resetting the accessed flag of the page-table entries and flushing the TLB.
When the cache is full, the page to be evicted is chosen randomly from those
that have an unset accessed flag.

4.5 Portability

The proposed technique is easily portable to other operating systems. The only
prerequisite for the OS kernel is that it supports virtual memory, and that it
is possible to adapt the page fault handler so that it loads the cold code from
the repository. We have studied the source code of FreeBSD (a Unix-like OS)
and ReactOS (an open source Windows NT clone), and in both cases we were
able to easily identify the page fault handler routine in which to insert our page
loading code.

Of course, to gather the profile information and to split the cold code from
the unswappable code, one also needs to have a binary rewriter that is capable
of rewriting the OS kernel. While our binary rewriter is only capable of rewriting
Linux kernels, it does not rely on any specific Linux concepts to enable reliable
binary rewriting. Consequently, we believe porting the binary rewriter to other
OS kernels is only an implementation challenge, not a conceptual one.

5 Evaluation

In this section, we first describe the environment used in our evaluations. Second,
we evaluate the partitioning algorithms proposed in this work. Finally, we explore
several dimensions of the design space of the proposed mechanism (code cache
size and page replacement algorithm).

5.1 Evaluation Environment

The evaluation has been carried out using the 2.4.25 Linux kernel on an i386
system, but our mechanism can easily be applied to other operating systems on
other platforms with only minor changes.

The benchmark suite used to stress the system is Mediabench II [1], which is
suitable for testing embedded systems since it is composed of very specific multi-
media applications. The full set of programs is: cjpeg, djpeg, h263dec, h263enc,
h264dec, h264enc?, jpg2000dec, jpg2000enc, mpeg2dec, mpeg2enc, mpegddec,
and mpegdenc. Each program has been executed 5 times in order to obtain more
accurate results. The used input datasets are the ones bundled with the source
code of the benchmark suite.

Basic block profiles have been collected by running the full benchmark suite
on the target machine. In order to reduce external activities in the system, all
the user-space daemons have been stopped. This way, most of the kernel code
used by the benchmark applications is considered hot, and is hence placed in the
base partition. There could be some noise in the profile since it is collected from
the boot of the system to the end of the benchmark execution; therefore some
code only executed during the boot could be considered hot although it might
not be used by the benchmark applications.

The performance metrics considered in our evaluations are the kernel code
memory footprint, the number of page faults caused by our mechanism, and the
system-mode execution time observed during the sequential execution of all the
applications in the benchmark.

The used hardware platform is an i386-compatible VIA C3 processor clocked
at 1200Mhz, 256 MiB of RAM (limited to 64 MiB as we explain later), a VT823x
chipset, and an IDE UDMA2 hard disk. As we did not have access to an embed-
ded system with integrated Flash memory at the time of writing, we cannot give
accurate measurements for the slowdown incurred by the code loading opera-
tions. However, we believe that we can still provide very accurate estimates of

3 H264 encoder has been excluded due to its excessive execution time

the slowdown by inserting a realistic delay in the code loading mechanism that
simulates the latency caused by reading a 4 KiB page from Flash memory.

In our current implementation, the swappable code resides in RAM, but in
a physical range that is not used by the kernel (the kernel’s physical memory
usage was limited through the mem command line parameter at boot time). The
swapped-out code is loaded into this physical range by a modified version of the
GRUB boot loader. Loading code into the kernel-visible physical memory is then
simply implemented by copying the appropriate page from this memory range
into the physical code cache frames.

The latency that would be incurred by loading from a Flash device is sim-
ulated by a delay that is inserted in the copying code. In order to get a good
estimate for this delay value, we have measured the time needed to read a 4 KiB
block from Flash memory on a real embedded device. For this measurement,
we have used an Intrynsic CerfCube 255, with a PXA255 XScale (ARM-based)
processor clocked at 450 Mhz and 32 MiB of Intel StrataFlash J3 NOR-based
Flash ROM. On this system, reading a contiguous 4096-byte block from Flash
takes approximately 442 us. Consequently, we have used a delay value of 442 us
for our measurements.

5.2 Results

We first investigate the impact of the hot code threshold value T (see Section 4.2)
on the kernel code size. Next, we study the effect of the different code placement
strategies described in Section 3 on the kernel performance. Finally, we study
the impact of the code cache size and the page replacement policy on the perfor-
mance, given a fixed code placement algorithm and a fixed value of the threshold
T.

Name Code size|Data size|System ex. time|User ex. time
Original 657 312 7.00 395.76
Minimized non-init code 581 286 7.27 395.60

Table 1. Original kernel characterization (sizes are in KiB and times in seconds)

Table 1 summarizes the characteristics of both the original kernel and one in
which the amount of non-init code has been minimized by removing all unreach-
able code and data and moving non-init code to the init sections where possible,
as described in Section 4.3. The table shows the sizes of the non-init code and
data and the system mode and user mode execution time for one run of the
benchmark set. The system-mode execution time for the kernel with minimized
non-init code is 4% higher than for the original kernel. This difference can be
ascribed to the different code layouts in both kernels, which has an effect on
I-cache utilization, and thus results in small variations in execution time.

| |
original
minimized non-init code

1200 modules
core and base code + data + code cache
core and base code + data =

core code + data

1000 data

800

Size (KiB)

600

400

200

0

100 99.99 9998 99.95 999 998 995 929 98 95 920 80 50
Threshold (%)

Fig. 4. Static non-init kernel footprint per threshold with and without a 16-page code
cache

Influence of the hot code threshold on kernel code size The graph
in Figure 4 shows the kernel’s static memory footprint in function of the hot
code threshold T, both with and without a 16-page code cache included. The
sizes shown here do not include the initialization code and data, as these are
removed from memory during the boot process and as such are not relevant for
the kernel’s memory usage during the time the system is actually in use. For
reference, the footprint of the original kernel, one with minimized non-init code
and one with all optional functionality compiled as modules are also shown. Note
that the modules line only refers to the size of the image of a kernel compiled with
module support but it does not include the footprint of any of the modules, so it
marks the lower bound of its code footprint. Some of the functionality provided
by the modules is always needed (e.g. root filesystem, disk device driver) and
they are almost permanently resident in memory. Other modules are loaded and
unloaded as their functionality is used (e.g. ELF loading). Therefore, during
normal operation, the actual code footprint is higher since some modules are
resident in memory.

While the static non-init footprint of the original kernel is 978 KiB, it is re-
duced to 867 KiB in the kernel with minimized non-init code, and to 718 KiB
in a kernel compiled with module support. With the cold code removed from
memory, the footprint ranges from 548 KiB (T = 100%) to 398 KiB (T' = 50%).
Taking into account a realistic code cache size of 16 pages, this becomes 612 KiB
to 462 KiB, which amounts to a gain of 37.5% to 53.8% respectively when com-
pared to the original kernel. Looking only at the non-init code sizes, the gains
are 53% (code 4 code cache size 324 KiB) to 74.8% (code + code cache size
174 KiB) respectively.

As Figure 4 clearly shows, the interesting range for T' values lies between
100% and 98%. Swapping out code at lower threshold values has almost no
impact on the footprint reduction, whereas that it does have a significant impact
on the kernel’s performance, as we show later.

)
per entiy point (32) ==9¢-==
per entry point (64)

profile based (16)
0 profile based (32

35000 ! — !
l per entty point (16) ==
i)
profile based (64)

25000

20000

15000

Kernel page faults

10000

5000

o mz pnnntn

100 99.99 99.98 9995 999 998 99.5 99 98 95 90 80 50
Threshold (%)

Fig. 5. Kernel code page faults for the different code placement strategies

Code partitioning evaluation In order to evaluate the effectiveness of the
code placement strategies discussed in Section 3.2, we have generated kernels
for the same threshold values as used in Figure 4, for each combination of the
placement strategies (profile-based and per-entry point) and three different code
cache sizes (16, 32, and 64 pages). For each of these kernels, we recorded the
total number of code loading events (i.e., kernel space page faults, Figure 5) and
the total system-mode execution time (Figure 6) during a run of the benchmark
suite. Pages in the code cache are replaced according to an NRU policy. The
user-mode execution times for the benchmark runs remained largely the same
as for the original kernel, and are not shown here.

As can be expected, the profile-based code placement strategy is much more
effective than the per-entry point strategy for lower values of T": the hotter the
code that is swapped out, the more sense it makes to rely on profile information
to guide the placement. For threshold values lower than 99.95 (using a 16-page
or 32-page code cache), the number of page faults shown by the per-entry point
algorithm grows exponentially. On the other hand, the profile-based strategy
shows acceptable results even for a 16-page code cache. Using a 64-page code
cache shows a reasonable number of page faults for the per-entry algorithm,
although it remains much lower and almost constant for the profile-based algo-
rithm.

LS

40 | | |
per entry point (16)
per entry point (32) ==
per entry point (64)

35 profile based (16)
profile based (32)
profile based (64)
riginal < e ue”

30 e
/ ("

25 /

20

Execution time (seconds)

0

100 99.99 9998 99.95 99.9 99.8 99.5 99 98 95 920 80 50
Threshold (%)

Fig. 6. System-mode execution time of the benchmark suite for the different code
placement strategies

For reference, Figure 6 also includes the system-mode execution time of the
benchmark suite on the original kernel (7s). Interestingly, when the number of
page faults is low enough (less than 1000) the kernel with swapping enabled
outperforms the original kernel for all placement strategies. This can be at-
tributed to a better I-cache utilization, as in the rewritten kernels the hot code
is separated from the cold code, which is the basic concept behind code lay-
out optimizations for improved cache utilization like the one proposed by Pettis
and Hansen [23]. For lower values the per-entry point algorithm shows a large
performance degradation caused by the huge number of page faults, while the
profile-based algorithm obtains much better results, especially when using a 32-
page (maximum slowdown of 1.3 s or 19%) or 64-page code cache (speedups from
0.7 to 0.2s — 10% to 3%).

These results suggest that it is not very useful to use T values lower than
99.9%, as there is only little code size to be gained. With T' = 99.9%, a 16-page
cold code cache suffices to get adequate performance: a code footprint reduction
of 68% is coupled with a slight speedup of 2.2% in the system-mode execution
time.

Design space exploration Finally, we explore the impact of the in-kernel
eviction policy on the performance of the code-loading scheme. For these exper-
iments, we focused on a kernel rewritten using the profile-based code placement
strategy and a hot code threshold value T' = 99.9%.

Like in the previous graphs, code cache sizes are varied between 16, 32 and
64 pages, the following cache eviction policies are tried: round robin, random
replacement and not-recently-used (NRU) replacement.

1200 L
Random ——1
Round Robin ssssss
NRU

1000

800 -

Faults

600

400

200

48 48 48

16 32 64
Swap-in buffer size (pages)

Fig. 7. Influence of the code cache size and the cache eviction policy on the amount of
kernel code page faults

12 L
Random ———1
Round Robin s
NRU s

original

Execution time (seconds)
o
!
T

16 32 64
Swap-in buffer size (pages)

Fig. 8. Influence of the code cache size and the cache eviction policy on the system-
mode execution time

First, the influence of the code cache size and the cache eviction policy on the
number of page faults is shown in Figure 7. We observe that a 64-page code cache
holds the entire working set of swappable code pages. Decreasing the code cache
size significantly increases the amount of kernel page faults. However this number
of faults is not enough to significantly penalize the system level execution time, as
shown in Figure 8. There is a slight speedup when compared to the original kernel
on all our tests using different code cache sizes. We presume this to be caused by

the aforementioned I-cache utilization effects. The difference in execution times
for the different combinations of cold code cache size and replacement algorithm
is proportional to the measured number of page transfers.

Focusing on the cache eviction policy, we observe that NRU always performs
best when looking at the number of page faults. The same goes for system-mode
execution times, with the exception of the 64 page case. There, as the whole
working set of the kernel fits into the code cache, the number of page faults
remains constant for the 3 eviction policies.

Impact on the performance of I/O-heavy applications For each kernel
page fault, a 4 KiB page has to be read from Flash. One might wonder in which
way this affects the performance of user space programs that make heavy use of
the Flash memory for loading and storing data. Fortunately, the impact of the
code loading on the total available Flash bandwidth is small. Assume that we
have chosen a threshold of T' = 99.9%, with a 16-page cold code cache and the
NRU replacement policy. For our test environment, this boils down to a total
of 818 page faults over the execution of the benchmarks. Each page fault takes
approximately 442 us, so the total time spent reading cold pages from Flash is
approximately 0.36s. Given the total execution time of the benchmarks (user
time + system time) of 403.2s, this means that the code loading takes up only
0.09% of the total Flash bandwidth.

6 Related Work

In this section, we will discuss the related work with regards to OS kernel memory
footprint reduction, on-demand code loading and minimization of page fault
occurrences through code reordering.

6.1 Operating System Memory Footprint Reduction

The idea of specializing the Linux kernel for a specific application was first
explored by Lee et al. [21]. Based on source code analysis, a system-wide call
graph that spans the application, the libraries and the kernel is built. On this
graph, a reachability analysis is performed, resulting in a compaction of a Linux
2.2 kernel of 17% in a simple case study.

Chanet et al. [7] use link-time binary compaction techniques to reduce the
memory footprint of the Linux kernel. For systems that have a known, fixed
hardware and software configuration, several specialization techniques that re-
duce the memory footprint even further are introduced. Run-time static memory
footprint reductions (that is, not counting the kernel’s dynamically allocated
memory) of about 16% were achieved for Linux 2.4 kernels compiled for the
ARM and 1386 architectures.

He et al. [19] use similar binary rewriting techniques to reduce the code
size of the Linux kernel. A novelty in their approach is the use of approzimate
decompilation to generate C source code for hand-written assembly code in the

kernel. This allows the use of a source code based pointer analysis (the FA-
analysis [22]) for the identification of targets of indirect function calls. While the
generated source code is not functionally equivalent to the original assembler
code, it exhibits the same properties with regards to this FA-analysis. On a
Linux 2.4 kernel without networking support, they report a code size reduction
of 23.83%. For the same test system as used by Chanet et al. the results roughly
correspond to those from [7], suggesting the two techniques are approximately
equal in strength.

Later work by Chanet et al. [8] extends on the previous techniques by means
of code compression techniques. Through code coverage analysis, frozen code is
identified. This code is then stored in compressed format and decompressed at
run time only if it is actually needed. To avoid concurrency issues, once code is
decompressed, it is never evicted from memory. This makes this technique useless
for the more general cold code compression, as the cold code will be executed at
least once, and thus still take up memory for the rest of the system’s run time.
However, even after compaction and specialization of the kernel, there is still
over 50% frozen code in the kernel, making this technique worthwhile. The com-
bined compaction, specialization and compression techniques reduce the static
memory footprint of a Linux 2.4 kernel with 23.3% for the 1386 architecture and
28% for the ARM architecture. The smaller kernels suffered from a performance
degradation of 2.86% (i386) and 1.97% (ARM). The same evaluation systems
were used as in [7], so the results can be compared directly.

An alternative approach to customize an OS for use in embedded devices is
proposed by Bhatia et al. [6]. The authors of this paper propose to remotely
customize OS modules on demand. A customization server provides a highly
optimized and specialized version of an OS function on demand of an application.
The embedded device needs to send the customization context and the required
function to the server and on receipt of the customized version, applications can
start using it. The size of the customized code is reduced up to a factor of 20
for a TCP/IP stack implementation for ARM Linux, while the code runs 25%
faster and throughput increases by up to 21%.

While our approach to minimize the kernel’s memory footprint is top-down
in that we start with a full-featured kernel and strip away as much unneeded
functionality as possible, there is a number of projects that take a bottom-
up approach. The Flux OSKit [15], Think [13] and TinyOS [16] are operating
system construction frameworks that offer a library of system components to the
developer, allowing him to assemble an operating system kernel containing only
the needed functionality for the system.

6.2 On-demand Code Loading

The technique proposed in this paper is of course very much influenced by the
virtual memory techniques used in most modern processors and operating sys-
tems [20]. The most important differences are that we selectively swap only parts
of the kernel code in order to reduce the number of necessary code cache refills
and that most VM systems use the hard disk, which is very slow compared to

main memory, as the off-line storage medium. As such, swapping incurs much
bigger latencies, that make the method less suitable for application in timing-
critical programs like an OS kernel.

Citron et al. [9] propose to remove frozen code and data from the memory
image of a program. Control transfers to frozen code and memory accesses to
frozen data are replaced by illegal instructions. The interrupt that occurs on
execution of these illegal instructions is then intercepted and used as a trigger to
load the needed code or data. A size reduction of 78% for the MediaBench suite
of programs is reported. As only frozen code and data are loaded on demand,
there are very little load events necessary, which makes the performance impact
negligible. The approach is conceptually similar to ours, with the illegal opcode
exception replacing the page fault exception as the trigger to load new code.
Because this approach is not bound to the VM system, it is possible to load
code and data at smaller granularity than the 4 KiB blocks that we use. However,
while the paper mentions that once-loaded code may be evicted when memory
is low, the authors do not discuss the concurrency issues this entails in multi-
threaded programs. As such, it is not clear how well their technique holds up for
this kind of programs.

Debray and Evans [11] use software-controlled code compression to reduce the
code size of programs for the Alpha architecture. With profile data infrequently
executed code fragments are detected. These fragments are stored in memory in a
compressed form, and replaced by stubs. Upon execution of a stub, the necessary
code is decompressed in a fixed-size buffer. When applied to programs that were
already optimized for code size using link-time compaction techniques [12], ad-
ditional code size reductions of 13.7% to 18.8% were achieved. The performance
impact ranges from a slight speedup to a 28% slowdown. Again, no attention is
given to concurrency issues that may arise with code eviction in multithreaded
programs.

6.3 Code Reordering for Page Fault Minimization

Hatfield and Gerald [18] describe a technique that aims to minimize the number
of page faults for both code and data references. The code and data are divided
into a set of relocatable blocks (e.g. an array or a procedure). Using profile data,
a mearness matrix is constructed, with one row and column for each relocatable
block. Entry c;; of this matrix represents the count of references from block i to
block j. Virtual memory pages correspond to square regions along the diagonal
of the matrix. By reordering the rows and columns of the matrix, the largest
entries are brought closest to the diagonal, which corresponds to placing the
blocks that reference each other most on the same page.

Ferrari [14] formulates the problem as a graph clustering problem. Nodes in
the graph represent relocatable blocks. The weight of a node equals the size of
the block it represents. Edges in the graph represent interblock references, and
can be weighted according to various cost functions. An optimal ordering is then
sought by clustering graph nodes in such a way that no node becomes larger than
the page size and the total weight of the remaining edges is minimal. If the edges

are weighted according to profile information, this method is equivalent to that
of Hatfield and Gerald. The author proposes a better-performing edge weighting,
however, that is based on a trace of the block references during execution instead
of mere profile data.

Pettis and Hansen [23] propose to reorder the procedures in a program in
such a way that those procedures that call each other most frequently are placed
closest together. Their main aim is to reduce the number of conflict misses in
the instruction cache, but they note that this placement algorithm also reduces
the number of page faults during program execution. Once again, the program
is represented as a graph, with the nodes representing the procedures, and edges
representing procedure calls. The edges are weighted according to profile in-
formation. In each step of the algorithm, the edge with the highest weight is
selected and its head and tail nodes are merged. This method does not prevent
procedures from spanning page boundaries.

Gloy and Smith [17] also reorder procedures to improve a program’s in-
struction memory hierarchy behaviour. Their technique is similar to Pettis and
Hansen’s, but instead of profile information they use temporal ordering infor-
mation, which not only summarizes the number of calls from one procedure to
another, but also in which way these calls are interleaved. While their approach
is in the first place directed towards optimization of the cache utilization, the
authors also discuss an extension of the technique to minimize the amount of
page faults.

7 Conclusions & Future Work

In this paper we introduced a novel on-demand code loading technique aimed
at reducing the memory footprint of operating systems kernels for embedded
systems with support for virtual memory. The page fault mechanism provided
by the processor is used to trigger code loading and to avoid concurrency issues
related to eviction of already-loaded code from memory. By using profile infor-
mation, we can limit the code loading scheme to infrequently executed code and
thus limit the performance impact. For a case study involving the Linux 2.4.25
kernel on an 1386 platform, we were able to reduce the static kernel memory foot-
print (code + data) with up to 54.5%, with a slight speedup of the system-mode
operations of 2.2% for our best-performing code placement strategy. When tak-
ing user-mode execution time into account, the speedup drops to 0.04%, which
is negligible. Consequently, the proposed technique is a viable means of reducing
the memory footprint of an OS kernel for use in an embedded system.

We have investigated two different code placement strategies: one based on
profile information and one that just takes the static structure of the code into
account, and have shown that the profile-based strategy is always best, even when
placing only cold code, for which there is little profile information available.

In future work, we will focus on improving the code placement strategies to
reduce the amount of page faults that still occur, and extend the technique to
on-demand loading of read-only kernel data sections.

Acknowledgments

The authors wish to acknowledge the HIPEAC European Network of Excellence
for the support it has given to our research. The work of Dominique Chanet was
funded in part by the Flanders Fund for Scientific Research (FWO-Vlaanderen).
We would also like to thank Bruno De Bus for his excellent insights and sugges-
tions.

References

10.

11.

12.

13.

Mediabench II benchmark. http://euler.slu.edu/~fritts/mediabench/.

The Intel XScale microarchitecture technical summary. http://download.intel.
com/design/intelxscale/XScaleDatasheet4.pdf.

MIPS32 4Kc processor core data sheet. http://www.mips.com/
content/Documentation/MIPSDocumentation/ProcessorCores/4KFamily/
MD00039-2B-4KC-DTS-01.07.pdf/getDownload.

The Texas Instrument OMAP platform. http://www.ti.com/omap.

Discussion on kernel paging on the linux kernel mailing list, April 2001. http:
//1kml.org/lkml/2001/4/17/115.

Sapan Bhatia, Charles Consel, and Calton Pu. Remote customization of systems
code for embedded devices. In EMSOFT ’0/: Proceedings of the 4th ACM interna-
tional conference on Embedded software, pages 7-15, New York, NY, USA, 2004.
ACM Press.

D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere. System-
wide compaction and specialization of the Linux kernel. In Proc. of the 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 95-104, 2005.

Dominique Chanet, Bjorn De Sutter, Bruno De Bus, Ludo Van Put, and Koen
De Bosschere. Automated reduction of the memory footprint of the linux ker-
nel. ACM Transactions on Embedded Computing Systems (TECS), 6(2), 2007. To
appear.

Daniel Citron, Gadi Haber, and Roy Levin. Reducing program image size by
extracting frozen code and data. In EMSOFT ’0/: Proceedings of the 4th ACM
international conference on Embedded software, pages 297-305, New York, NY,
USA, 2004. ACM Press.

B. De Sutter, B. De Bus, and K. De Bosschere. Link-time binary rewriting tech-
niques for program compaction. ACM Transactions on Programming Languages
and Systems, 27(5):882-945, 9 2005.

Saumya Debray and William Evans. Profile-guided code compression. In PLDI
’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, pages 95-105, New York, NY, USA, 2002. ACM Press.
S.K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for
code compaction. ACM Transactions on Programming Languages and Systems,
22(2):378-415, 3 2002.

Jean-Philippe Fassino, Jean-Bernard Stefani, Julia L. Lawall, and Gilles Muller.
Think: A software framework for component-based operating system kernels. In
Proceedings of the General Track: 2002 USENIX Annual Technical Conference,
pages 73-86, Berkeley, CA, USA, 2002. USENIX Association.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Domenico Ferrari. Improving locality by critical working sets. Commun. ACM,
17(11):614-620, 1974.

Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shiv-
ers. The Flux OSKit: a substrate for kernel and language research. In SOSP
’97: Proceedings of the sixteenth ACM symposium on Operating systems princi-
ples, pages 3851, New York, NY, USA, 1997. ACM Press.

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David
Culler. The nesC language: A holistic approach to networked embedded systems.
In PLDI ’08: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 1-11, New York, NY, USA, 2003. ACM
Press.

Nikolas Gloy and Michael D. Smith. Procedure placement using temporal-ordering
information. ACM Trans. Program. Lang. Syst., 21(5):977-1027, 1999.

D. J. Hatfield and J. Gerald. Program restructuring for virtual memory. IBM
Systems Journal, 10(3):168-192, 1971.

HaiFeng He, John Trimble, Somu Perianayagam, Saumya Debray, and Gregory
Andrews. Code compaction of an operating system kernel. In Proceedings of Code
Generation and Optimization (CGO), March 2007. To appear.

John L. Hennessy and David A. Patterson. Computer architecture: a quantitative
approach, chapter 5. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

C.-T. Lee, J.-M. Lin, Z.-W. Hong, and W.-T. Lee. An application-oriented Linux
kernel customization for embedded systems. Journal of Information Science and
Engineering, 20(6):1093-1107, 2004.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise call graphs for C
programs with function pointers. Automated Software Engg., 11(1):7-26, 2004.
Karl Pettis and Robert C. Hansen. Profile guided code positioning. In PLDI
’90: Proceedings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation, pages 16-27, New York, NY, USA, 1990. ACM Press.

